Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8499, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605076

RESUMEN

In 2007, the Anaktuvuk River fire burned more than 1000 km2 of arctic tundra in northern Alaska, ~ 50% of which occurred in an area with ice-rich syngenetic permafrost (Yedoma). By 2014, widespread degradation of ice wedges was apparent in the Yedoma region. In a 50 km2 area, thaw subsidence was detected across 15% of the land area in repeat airborne LiDAR data acquired in 2009 and 2014. Updating observations with a 2021 airborne LiDAR dataset show that additional thaw subsidence was detected in < 1% of the study area, indicating stabilization of the thaw-affected permafrost terrain. Ground temperature measurements between 2010 and 2015 indicated that the number of near-surface soil thawing-degree-days at the burn site were 3 × greater than at an unburned control site, but by 2022 the number was reduced to 1.3 × greater. Mean annual ground temperature of the near-surface permafrost increased by 0.33 °C/yr in the burn site up to 7-years post-fire, but then cooled by 0.15 °C/yr in the subsequent eight years, while temperatures at the control site remained relatively stable. Permafrost cores collected from ice-wedge troughs (n = 41) and polygon centers (n = 8) revealed the presence of a thaw unconformity, that in most cases was overlain by a recovered permafrost layer that averaged 14.2 cm and 18.3 cm, respectively. Taken together, our observations highlight that the initial degradation of ice-rich permafrost following the Anaktuvuk River tundra fire has been followed by a period of thaw cessation, permafrost aggradation, and terrain stabilization.

2.
Glob Chang Biol ; 20(4): 1211-24, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24339207

RESUMEN

Many areas of the Arctic are simultaneously affected by rapid climate change and rapid industrial development. These areas are likely to increase in number and size as sea ice melts and abundant Arctic natural resources become more accessible. Documenting the changes that have already occurred is essential to inform management approaches to minimize the impacts of future activities. Here, we determine the cumulative geoecological effects of 62 years (1949-2011) of infrastructure- and climate-related changes in the Prudhoe Bay Oilfield, the oldest and most extensive industrial complex in the Arctic, and an area with extensive ice-rich permafrost that is extraordinarily sensitive to climate change. We demonstrate that thermokarst has recently affected broad areas of the entire region, and that a sudden increase in the area affected began shortly after 1990 corresponding to a rapid rise in regional summer air temperatures and related permafrost temperatures. We also present a conceptual model that describes how infrastructure-related factors, including road dust and roadside flooding are contributing to more extensive thermokarst in areas adjacent to roads and gravel pads. We mapped the historical infrastructure changes for the Alaska North Slope oilfields for 10 dates from the initial oil discovery in 1968-2011. By 2010, over 34% of the intensively mapped area was affected by oil development. In addition, between 1990 and 2001, coincident with strong atmospheric warming during the 1990s, 19% of the remaining natural landscapes (excluding areas covered by infrastructure, lakes and river floodplains) exhibited expansion of thermokarst features resulting in more abundant small ponds, greater microrelief, more active lakeshore erosion and increased landscape and habitat heterogeneity. This transition to a new geoecological regime will have impacts to wildlife habitat, local residents and industry.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/métodos , Yacimiento de Petróleo y Gas , Alaska , Regiones Árticas , Cambio Climático , Hielo , Suelo , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA