Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Mol Ther Nucleic Acids ; 35(2): 102175, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38576454

RESUMEN

RNA therapeutics are an emerging, powerful class of drugs with potential applications in a wide range of disorders. A central challenge in their development is the lack of clear pharmacokinetic (PK)-pharmacodynamic relationship, in part due to the significant delay between the kinetics of RNA delivery and the onset of pharmacologic response. To bridge this gap, we have developed a physiologically based PK/pharmacodynamic model for systemically administered mRNA-containing lipid nanoparticles (LNPs) in mice. This model accounts for the physiologic determinants of mRNA delivery, active targeting in the vasculature, and differential transgene expression based on nanoparticle coating. The model was able to well-characterize the blood and tissue PKs of LNPs, as well as the kinetics of tissue luciferase expression measured by ex vivo activity in organ homogenates and bioluminescence imaging in intact organs. The predictive capabilities of the model were validated using a formulation targeted to intercellular adhesion molecule-1 and the model predicted nanoparticle delivery and luciferase expression within a 2-fold error for all organs. This modeling platform represents an initial strategy that can be expanded upon and utilized to predict the in vivo behavior of RNA-containing LNPs developed for an array of conditions and across species.

2.
Mol Ther ; 32(5): 1344-1358, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38454606

RESUMEN

Effective delivery of mRNA or small molecule drugs to the brain is a significant challenge in developing treatment for acute ischemic stroke (AIS). To address the problem, we have developed targeted nanomedicine to increase drug concentrations in endothelial cells of the blood-brain barrier (BBB) of the injured brain. Inflammation during ischemic stroke causes continuous neuronal death and an increase in the infarct volume. To enable targeted delivery to the inflamed BBB, we conjugated lipid nanocarriers (NCs) with antibodies that bind cell adhesion molecules expressed at the BBB. In the transient middle cerebral artery occlusion mouse model, NCs targeted to vascular cellular adhesion molecule-1 (VCAM) achieved the highest level of brain delivery, nearly two orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles with luciferase-encoding mRNA and Cre-recombinase showed selective expression in the ischemic brain. Anti-inflammatory drugs administered intravenously after ischemic stroke reduced cerebral infarct volume by 62% (interleukin-10 mRNA) or 35% (dexamethasone) only when they were encapsulated in VCAM-targeted NCs. Thus, VCAM-targeted lipid NCs represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS.


Asunto(s)
Barrera Hematoencefálica , Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico , Liposomas , Nanopartículas , Molécula 1 de Adhesión Celular Vascular , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Animales , Ratones , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Nanopartículas/química , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Lípidos/química , Sistemas de Liberación de Medicamentos/métodos , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Humanos
3.
Bioengineering (Basel) ; 11(3)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38534474

RESUMEN

The neuroinflammatory cascade triggered by traumatic brain injury (TBI) represents a clinically important point for therapeutic intervention. Neuroinflammation generates oxidative stress in the form of high-energy reactive oxygen and nitrogen species, which are key mediators of TBI pathology. The role of the blood-brain barrier (BBB) is essential for proper neuronal function and is vulnerable to oxidative stress. Results herein explore the notion that attenuating oxidative stress at the vasculature after TBI may result in improved BBB integrity and neuroprotection. Utilizing amino-chemistry, a biological construct (designated "dual conjugate" for short) was generated by covalently binding two antioxidant enzymes (superoxide dismutase 1 (SOD-1) and catalase (CAT)) to antibodies specific for ICAM-1. Bioengineering of the conjugate preserved its targeting and enzymatic functions, as evaluated by real-time bioenergetic measurements (via the Seahorse-XF platform), in brain endothelial cells exposed to increasing concentrations of hydrogen peroxide or a superoxide anion donor. Results showed that the dual conjugate effectively mitigated the mitochondrial stress due to oxidative damage. Furthermore, dual conjugate administration also improved BBB and endothelial protection under oxidative insult in an in vitro model of TBI utilizing a software-controlled stretching device that induces a 20% in mechanical strain on the endothelial cells. Additionally, the dual conjugate was also effective in reducing indices of neuroinflammation in a controlled cortical impact (CCI)-TBI animal model. Thus, these studies provide proof of concept that targeted dual antioxidant biologicals may offer a means to regulate oxidative stress-associated cellular damage during neurotrauma.

4.
bioRxiv ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37398465

RESUMEN

After more than 100 failed drug trials for acute ischemic stroke (AIS), one of the most commonly cited reasons for the failure has been that drugs achieve very low concentrations in the at-risk penumbra. To address this problem, here we employ nanotechnology to significantly enhance drug concentration in the penumbra's blood-brain barrier (BBB), whose increased permeability in AIS has long been hypothesized to kill neurons by exposing them to toxic plasma proteins. To devise drug-loaded nanocarriers targeted to the BBB, we conjugated them with antibodies that bind to various cell adhesion molecules on the BBB endothelium. In the transient middle cerebral artery occlusion (tMCAO) mouse model, nanocarriers targeted with VCAM antibodies achieved the highest level of brain delivery, nearly 2 orders of magnitude higher than untargeted ones. VCAM-targeted lipid nanoparticles loaded with either a small molecule drug (dexamethasone) or mRNA (encoding IL-10) reduced cerebral infarct volume by 35% or 73%, respectively, and both significantly lowered mortality rates. In contrast, the drugs delivered without the nanocarriers had no effect on AIS outcomes. Thus, VCAM-targeted lipid nanoparticles represent a new platform for strongly concentrating drugs within the compromised BBB of penumbra, thereby ameliorating AIS. Graphical abstract: Acute ischemic stroke induces upregulation of VCAM. We specifically targeted upregulated VCAM in the injured region of the brain with drug- or mRNA-loaded targeted nanocarriers. Nanocarriers targeted with VCAM antibodies achieved the highest brain delivery, nearly orders of magnitude higher than untargeted ones. VCAM-targeted nanocarriers loaded with dexamethasone and mRNA encoding IL-10 reduced infarct volume by 35% and 73%, respectively, and improved survival rates.

5.
Adv Nanobiomed Res ; 3(3): 2200106, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37266328

RESUMEN

Diseases of the pulmonary alveolus, such as pulmonary fibrosis, are leading causes of morbidity and mortality, but exceedingly few drugs are developed for them. A major reason for this gap is that after inhalation, drugs are quickly whisked away from alveoli due to their high perfusion. To solve this problem, the mechanisms by which nano-scale drug carriers dramatically improve lung pharmacokinetics using an inhalable liposome formulation containing nintedanib, an antifibrotic for pulmonary fibrosis, are studied. Direct instillation of liposomes in murine lung increases nintedanib's total lung delivery over time by 8000-fold and lung half life by tenfold, compared to oral nintedanib. Counterintuitively, it is shown that pulmonary surfactant neither lyses nor aggregates the liposomes. Instead, each lung compartment (alveolar fluid, alveolar leukocytes, and parenchyma) elutes liposomes over 24 h, likely serving as "drug depots." After deposition in the surfactant layer, liposomes are transferred over 3-6 h to alveolar leukocytes (which take up a surprisingly minor 1-5% of total lung dose instilled) in a nonsaturable fashion. Further, all cell layers of the lung parenchyma take up liposomes. These and other mechanisms elucidated here should guide engineering of future inhaled nanomedicine for alveolar diseases.

6.
Sci Adv ; 9(12): eadd5028, 2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947620

RESUMEN

Endothelial cells (ECs) grant access of disseminated cancer cells to distant organs. However, the molecular players regulating the activation of quiescent ECs at the premetastatic niche (PMN) remain elusive. Here, we find that ECs at the PMN coexpress tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its cognate death receptor 5 (DR5). Unexpectedly, endothelial TRAIL interacts intracellularly with DR5 to prevent its signaling and preserve a quiescent vascular phenotype. In absence of endothelial TRAIL, DR5 activation induces EC death and nuclear factor κB/p38-dependent EC stickiness, compromising vascular integrity and promoting myeloid cell infiltration, breast cancer cell adhesion, and metastasis. Consistently, both down-regulation of endothelial TRAIL at the PMN by proangiogenic tumor-secreted factors and the presence of the endogenous TRAIL inhibitors decoy receptor 1 (DcR1) and DcR2 favor metastasis. This study discloses an intracrine mechanism whereby TRAIL blocks DR5 signaling in quiescent endothelia, acting as gatekeeper of the vascular barrier that is corrupted by the tumor during cancer cell dissemination.


Asunto(s)
Neoplasias de la Mama , Células Endoteliales , Humanos , Femenino , Células Endoteliales/metabolismo , Ligandos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF , Apoptosis/genética , Factor de Necrosis Tumoral alfa/farmacología
7.
ACS Nano ; 16(3): 4666-4683, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35266686

RESUMEN

A long-standing goal of nanomedicine is to improve a drug's benefit by loading it into a nanocarrier that homes solely to a specific target cell and organ. Unfortunately, nanocarriers usually end up with only a small percentage of the injected dose (% ID) in the target organ, due largely to clearance by the liver and spleen. Further, cell-type-specific targeting is rarely achieved without reducing target organ accumulation. To solve these problems, we introduce DART (dual affinity to RBCs and target cells), in which nanocarriers are conjugated to two affinity ligands, one binding red blood cells and one binding a target cell (here, pulmonary endothelial cells). DART nanocarriers first bind red blood cells and then transfer to the target organ's endothelial cells as the bound red blood cells squeeze through capillaries. We show that within minutes after intravascular injection in mice nearly 70% ID of DART nanocarriers accumulate in the target organ (lungs), more than doubling the % ID ceiling achieved by a multitude of prior technologies, finally achieving a majority % ID in a target organ. Humanized DART nanocarriers in ex vivo perfused human lungs recapitulate this phenomenon. Furthermore, DART enhances the selectivity of delivery to target endothelial cells over local phagocytes within the target organ by 6-fold. DART's marked improvement in both organ- and cell-type targeting may thus be helpful in localizing drugs for a multitude of medical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Animales , Portadores de Fármacos/metabolismo , Células Endoteliales/metabolismo , Eritrocitos , Pulmón/metabolismo , Ratones , Preparaciones Farmacéuticas
8.
J Control Release ; 344: 50-61, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34953981

RESUMEN

Current nucleoside-modified RNA lipid nanoparticle (modmRNA-LNP) technology has successfully paved the way for the highest clinical efficacy data from next-generation vaccinations against SARS-CoV-2 during the COVID-19 pandemic. However, such modmRNA-LNP technology has not been characterized in common pre-existing inflammatory or immune-challenged conditions, raising the risk of adverse clinical effects when administering modmRNA-LNPs in such cases. Herein, we induce an acute-inflammation model in mice with lipopolysaccharide (LPS) intratracheally (IT), 1 mg kg-1, or intravenously (IV), 2 mg kg-1, and then IV administer modmRNA-LNP, 0.32 mg kg-1, after 4 h, and screen for inflammatory markers, such as pro-inflammatory cytokines. ModmRNA-LNP at this dose caused no significant elevation of cytokine levels in naive mice. In contrast, shortly after LPS immune stimulation, modmRNA-LNP enhanced inflammatory cytokine responses, Interleukin-6 (IL-6) in serum and Macrophage Inflammatory Protein 2 (MIP-2) in liver significantly. Our report identifies this phenomenon as inflammation exacerbation (IE), which was proven to be specific to the LNP, acting independent of mRNA cargo, and was demonstrated to be time- and dose-dependent. Macrophage depletion as well as TLR3 -/- and TLR4-/- knockout mouse studies revealed macrophages were the immune cells involved or responsible for IE. Finally, we show that pretreatment with anti-inflammatory drugs, such as corticosteroids, can partially alleviate IE response in mice. Our findings characterize the importance of LNP-mediated IE phenomena in gram negative bacterial inflammation, however, the generalizability of modmRNA-LNP in other forms of chronic or acute inflammatory and immune contexts needs to be addressed.


Asunto(s)
COVID-19 , Nanopartículas , Animales , Humanos , Inflamación , Lipopolisacáridos , Liposomas , Ratones , Pandemias , ARN Mensajero/genética , SARS-CoV-2
9.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502389

RESUMEN

Metal-oxide nanoparticles (MO-NPs), such as the highly bioreactive copper-based nanoparticles (CuO-NPs), are widely used in manufacturing of hundreds of commercial products. Epidemiological studies correlated levels of nanoparticles in ambient air with a significant increase in lung disease. CuO-NPs, specifically, were among the most potent in a set of metal-oxides and carbons studied in parallel regarding DNA damage and cytotoxicity. Despite advances in nanotoxicology research and the characterization of their toxicity, the exact mechanism(s) of toxicity are yet to be defined. We identified chlorination toxicity as a damaging consequence of inflammation and myeloperoxidase (MPO) activation, resulting in macromolecular damage and cell damage/death. We hypothesized that the inhalation of CuO-NPs elicits an inflammatory response resulting in chlorination damage in cells and lung tissues. We further tested the protective action of LGM2605, a synthetic small molecule with known scavenging properties for reactive oxygen species (ROS), but most importantly, for active chlorine species (ACS) and an inhibitor of MPO. CuO-NPs (15 µg/bolus) were instilled intranasally in mice and the kinetics of the inflammatory response in lungs was evaluated 1, 3, and 7 days later. Evaluation of the protective action of LGM2605 was performed at 24 h post-challenge, which was selected as the peak acute inflammatory response to CuO-NP. LGM2605 was given daily via gavage to mice starting 2 days prior to the time of the insult (100 mg/kg). CuO-NPs induced a significant inflammatory influx, inflammasome-relevant cytokine release, and chlorination damage in mouse lungs, which was mitigated by the action of LGM2605. Preventive action of LGM2605 ameliorated the adverse effects of CuO-NP in lung.


Asunto(s)
Butileno Glicoles/farmacología , Glucósidos/farmacología , Inflamación/tratamiento farmacológico , Animales , Líquido del Lavado Bronquioalveolar/citología , Butileno Glicoles/metabolismo , Cloro/metabolismo , Cobre/metabolismo , Cobre/toxicidad , Daño del ADN/efectos de los fármacos , Femenino , Glucósidos/metabolismo , Inflamasomas/efectos de los fármacos , Pulmón/efectos de los fármacos , Nanopartículas del Metal/efectos adversos , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Óxidos/farmacología , Peroxidasa/farmacología , Especies Reactivas de Oxígeno/farmacología
10.
Adv Drug Deliv Rev ; 157: 96-117, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32579890

RESUMEN

The bloodstream is the main transporting pathway for drug delivery systems (DDS) from the site of administration to the intended site of action. In many cases, components of the vascular system represent therapeutic targets. Endothelial cells, which line the luminal surface of the vasculature, play a tripartite role of the key target, barrier, or victim of nanomedicines in the bloodstream. Circulating DDS may accumulate in the vascular areas of interest and in off-target areas via mechanisms bypassing specific molecular recognition, but using ligands of specific vascular determinant molecules enables a degree of precision, efficacy, and specificity of delivery unattainable by non-affinity DDS. Three decades of research efforts have focused on specific vascular targeting, which have yielded a multitude of DDS, many of which are currently undergoing a translational phase of development for biomedical applications, including interventions in the cardiovascular, pulmonary, and central nervous systems, regulation of endothelial functions, host defense, and permeation of vascular barriers. We discuss the design of endothelial-targeted nanocarriers, factors underlying their interactions with cells and tissues, and describe examples of their investigational use in models of acute vascular inflammation with an eye on translational challenges.


Asunto(s)
Sistemas de Liberación de Medicamentos , Endotelio Vascular/metabolismo , Enfermedades Vasculares/tratamiento farmacológico , Animales , Células Endoteliales/metabolismo , Endotelio Vascular/citología , Humanos , Inflamación/tratamiento farmacológico , Nanomedicina , Nanopartículas
11.
Proc Natl Acad Sci U S A ; 117(7): 3405-3414, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32005712

RESUMEN

Drug targeting to inflammatory brain pathologies such as stroke and traumatic brain injury remains an elusive goal. Using a mouse model of acute brain inflammation induced by local tumor necrosis factor alpha (TNFα), we found that uptake of intravenously injected antibody to vascular cell adhesion molecule 1 (anti-VCAM) in the inflamed brain is >10-fold greater than antibodies to transferrin receptor-1 and intercellular adhesion molecule 1 (TfR-1 and ICAM-1). Furthermore, uptake of anti-VCAM/liposomes exceeded that of anti-TfR and anti-ICAM counterparts by ∼27- and ∼8-fold, respectively, achieving brain/blood ratio >300-fold higher than that of immunoglobulin G/liposomes. Single-photon emission computed tomography imaging affirmed specific anti-VCAM/liposome targeting to inflamed brain in mice. Intravital microscopy via cranial window and flow cytometry showed that in the inflamed brain anti-VCAM/liposomes bind to endothelium, not to leukocytes. Anti-VCAM/LNP selectively accumulated in the inflamed brain, providing de novo expression of proteins encoded by cargo messenger RNA (mRNA). Anti-VCAM/LNP-mRNA mediated expression of thrombomodulin (a natural endothelial inhibitor of thrombosis, inflammation, and vascular leakage) and alleviated TNFα-induced brain edema. Thus VCAM-directed nanocarriers provide a platform for cerebrovascular targeting to inflamed brain, with the goal of normalizing the integrity of the blood-brain barrier, thus benefiting numerous brain pathologies.


Asunto(s)
Anticuerpos/administración & dosificación , Barrera Hematoencefálica/efectos de los fármacos , Encefalitis/tratamiento farmacológico , Endotelio Vascular/efectos de los fármacos , Nanomedicina/métodos , Animales , Barrera Hematoencefálica/inmunología , Encefalitis/genética , Encefalitis/inmunología , Endotelio Vascular/inmunología , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/inmunología , Ratones , Receptores de Transferrina/genética , Receptores de Transferrina/inmunología , Trombomodulina/genética , Trombomodulina/inmunología , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/inmunología
12.
ACS Nano ; 13(10): 11409-11421, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31600053

RESUMEN

Deformability of injectable nanocarriers impacts rheological behavior, drug loading, and affinity target adhesion. Here, we present atomic force microscopy (AFM) and spectroscopy measurements of nanocarrier Young's moduli, tune the moduli of deformable nanocarriers with cross-linkers, and demonstrate vascular targeting behavior that correlates with Young's modulus. Homobifunctional cross-linkers were introduced into lysozyme-dextran nanogels (NGs). Single particle-scale AFM measurements determined NG moduli varying from ∼50-150 kPa for unmodified NGs or NGs with a short hydrophilic cross-linker (2,2'-(ethylenedioxy)bis(ethylamine), EOD) to ∼350 kPa for NGs modified with a longer hydrophilic cross-linker (4,9-dioxa-1,12-dodecanediamine, DODD) to ∼10 MPa for NGs modified with a longer hydrophobic cross-linker (1,12-diaminododecane, DAD). Cross-linked NGs were conjugated to antibodies for plasmalemma vesicle associated protein (PLVAP), a caveolar endothelial marker that cannot be accessed by rigid particles larger than ∼100 nm. In previous work, 150 nm NGs effectively targeted PLVAP, where rigid particles of similar diameter did not. EOD-modified NGs targeted PLVAP less effectively than unmodified NGs, but more effectively than DODD or DAD modified NGs, which both yielded low levels of targeting, resembling results previously obtained with polystyrene particles. Cross-linked NGs were also conjugated to antibodies against intracellular adhesion molecule-1 (ICAM-1), an endothelial marker accessible to large rigid particles. Cross-linked NGs and unmodified NGs targeted uniformly to ICAM-1. We thus demonstrate cross-linker modification of NGs, AFM determination of NG mechanical properties varying with cross-linker, and tuning of specific sterically constrained vascular targeting behavior in correlation with cross-linker-modified NG mechanical properties.


Asunto(s)
Nanogeles/química , Nanopartículas/química , Animales , Caveolas/química , Módulo de Elasticidad , Humanos , Proteínas de la Membrana/química , Microscopía de Fuerza Atómica , Propiedades de Superficie
13.
Front Neurol ; 10: 582, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31275220

RESUMEN

The endothelium is a thin monolayer of specialized cells that lines the luminal wall of blood vessels and constitutes the critical innermost portion of the physical barrier between the blood and the brain termed the blood-brain barrier (BBB). Aberrant changes in the endothelium occur in many neuropathological states, including those with high morbidity and mortality that lack targeted therapeutic interventions, such as traumatic brain injury (TBI). Utilizing ligands of surface determinants expressed on brain endothelium to target and combat injury mechanisms at damaged endothelium offers a new approach to the study of TBI and new avenues for clinical advancement. Many factors influence the targets that are expressed on endothelium. Therefore, the optimization of binding sites and ideal design features of nanocarriers are controllable factors that permit the engineering of nanotherapeutic agents with applicability that is specific to a known disease state. Following TBI, damaged endothelial cells upregulate cell adhesion molecules, including ICAM-1, and are key sites of reactive oxygen species (ROS) generation, including hydrogen peroxide. Reactive oxygen species along with pro-inflammatory mediators are known to contribute to endothelial damage and loss of BBB integrity. The use of targeted endothelial nanomedicine, with conjugates of the antioxidant enzyme catalase linked to anti-ICAM-1 antibodies, has recently been demonstrated to minimize oxidative stress at the BBB and reduce neuropathological outcomes following TBI. Here, we discuss targeted endothelial nanomedicine and its potential to provide benefits in TBI outcomes and future directions of this approach.

14.
Biomaterials ; 185: 348-359, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30273834

RESUMEN

One of the goals of nanomedicine is targeted delivery of therapeutic enzymes to the sub-cellular compartments where their action is needed. Endothelial caveolae-derived endosomes represent an important yet challenging destination for targeting, in part due to smaller size of the entry aperture of caveolae (ca. 30-50 nm). Here, we designed modular, multi-molecular, ferritin-based nanocarriers with uniform size (20 nm diameter) for easy drug-loading and targeted delivery of enzymatic cargo to these specific vesicles. These nanocarriers targeted to caveolar Plasmalemmal Vesicle-Associated Protein (Plvap) deliver superoxide dismutase (SOD) into endosomes in endothelial cells, the specific site of influx of superoxide mediating by such pro-inflammatory signaling as some cytokines and lipopolysaccharide (LPS). Cell studies showed efficient internalization of Plvap-targeted SOD-loaded nanocarriers followed by dissociation from caveolin-containing vesicles and intracellular transport to endosomes. The nanocarriers had a profound protective anti-inflammatory effect in an animal model of LPS-induced inflammation, in agreement with the characteristics of their endothelial uptake and intracellular transport, indicating that these novel, targeted nanocarriers provide an advantageous platform for caveolae-dependent delivery of biotherapeutics.


Asunto(s)
Caveolas/metabolismo , Portadores de Fármacos/metabolismo , Ferritinas/metabolismo , Nanopartículas/metabolismo , Superóxido Dismutasa/administración & dosificación , Animales , Proteínas Arqueales/metabolismo , Archaeoglobus fulgidus/metabolismo , Línea Celular , Sistemas de Liberación de Medicamentos , Inmunoconjugados/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Superóxido Dismutasa/farmacocinética
15.
J Control Release ; 291: 106-115, 2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30336167

RESUMEN

Systemic administration of lipid nanoparticle (LNP)-encapsulated messenger RNA (mRNA) leads predominantly to hepatic uptake and expression. Here, we conjugated nucleoside-modified mRNA-LNPs with antibodies (Abs) specific to vascular cell adhesion molecule, PECAM-1. Systemic (intravenous) administration of Ab/LNP-mRNAs resulted in profound inhibition of hepatic uptake concomitantly with ~200-fold and 25-fold elevation of mRNA delivery and protein expression in the lungs compared to non-targeted counterparts. Unlike hepatic delivery of LNP-mRNA, Ab/LNP-mRNA is independent of apolipoprotein E. Vascular re-targeting of mRNA represents a promising, powerful, and unique approach for novel experimental and clinical interventions in organs of interest other than liver.


Asunto(s)
Apolipoproteínas E/metabolismo , Sistemas de Liberación de Medicamentos , Endotelio Vascular/metabolismo , Nanopartículas/metabolismo , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , ARN Mensajero/administración & dosificación , Administración Intravenosa , Animales , Línea Celular , Portadores de Fármacos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inmunoconjugados/metabolismo , Ratones Endogámicos C57BL , ARN Mensajero/farmacocinética , Distribución Tisular
16.
Adv Mater ; 30(32): e1802373, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29956381

RESUMEN

Molecular targeting of nanoparticle drug carriers promises maximized therapeutic impact to sites of disease or injury with minimized systemic effects. Precise targeting demands addressing to subcellular features. Caveolae, invaginations in cell membranes implicated in transcytosis and inflammatory signaling, are appealing subcellular targets. Caveolar geometry has been reported to impose a ≈50 nm size cutoff on nanocarrier access to plasmalemma vesicle associated protein (PLVAP), a marker found in caveolae in the lungs. The use of deformable nanocarriers to overcome that size cutoff is explored in this study. Lysozyme-dextran nanogels (NGs) are synthesized with ≈150 or ≈300 nm mean diameter. Atomic force microscopy indicates the NGs deform on complementary surfaces. Quartz crystal microbalance data indicate that NGs form softer monolayers (≈60 kPa) than polystyrene particles (≈8 MPa). NGs deform during flow through microfluidic channels, and modeling of NG extrusion through porous filters yields sieving diameters less than 25 nm for NGs with 150 and 300 nm hydrodynamic diameters. NGs of 150 and 300 nm diameter target PLVAP in mouse lungs while counterpart rigid polystyrene particles do not. The data in this study indicate a role for mechanical deformability in targeting large high-payload drug-delivery vehicles to sterically obscured targets like PLVAP.


Asunto(s)
Nanopartículas , Animales , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Ratones , Polietilenglicoles , Polietileneimina
17.
J Control Release ; 282: 13-24, 2018 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-29522833

RESUMEN

Ferritin subunits of heavy and light polypeptide chains self-assemble into a spherical nanocage that serves as a natural transport vehicle for metals but can include diverse cargoes. Ferritin nanoparticles are characterized by remarkable stability, small and uniform size. Chemical modifications and molecular re-engineering of ferritin yield a versatile platform of nanocarriers capable of delivering a broad range of therapeutic and imaging agents. Targeting moieties conjugated to the ferritin external surface provide multivalent anchoring of biological targets. Here, we highlight some of the current work on ferritin as well as examine potential strategies that could be used to functionalize ferritin via chemical and genetic means to enable its utility in vascular drug delivery.


Asunto(s)
Vasos Sanguíneos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Ferritinas/química , Nanopartículas/química , Animales , Antineoplásicos/administración & dosificación , Vasos Sanguíneos/diagnóstico por imagen , Vasos Sanguíneos/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Humanos , Pulmón/irrigación sanguínea , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Modelos Moleculares , Neoplasias/irrigación sanguínea , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Tomografía de Emisión de Positrones/métodos , Vacunas/administración & dosificación
18.
J Control Release ; 272: 1-8, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29292038

RESUMEN

Inflammatory mediators binding to Toll-Like receptors (TLR) induce an influx of superoxide anion in the ensuing endosomes. In endothelial cells, endosomal surplus of superoxide causes pro-inflammatory activation and TLR4 agonists act preferentially via caveolae-derived endosomes. To test the hypothesis that SOD delivery to caveolae may specifically inhibit this pathological pathway, we conjugated SOD with antibodies (Ab/SOD, size ~10nm) to plasmalemmal vesicle-associated protein (Plvap) that is specifically localized to endothelial caveolae in vivo and compared its effects to non-caveolar target CD31/PECAM-1. Plvap Ab/SOD bound to endothelial cells in culture with much lower efficacy than CD31 Ab/SOD, yet blocked the effects of LPS signaling with higher efficiency than CD31 Ab/SOD. Disruption of cholesterol-rich membrane domains by filipin inhibits Plvap Ab/SOD endocytosis and LPS signaling, implicating the caveolae-dependent pathway(s) in both processes. Both Ab/SOD conjugates targeted to Plvap and CD31 accumulated in the lungs after IV injection in mice, but the former more profoundly inhibited LPS-induced pulmonary inflammation and elevation of plasma level of interferon-beta and -gamma and interleukin-27. Taken together, these results indicate that targeted delivery of SOD to specific cellular compartments may offer effective, mechanistically precise interception of pro-inflammatory signaling mediated by reactive oxygen species.


Asunto(s)
Antiinflamatorios/administración & dosificación , Anticuerpos/administración & dosificación , Proteínas Portadoras/inmunología , Proteínas de la Membrana/inmunología , Superóxido Dismutasa/administración & dosificación , Animales , Caveolas/metabolismo , Células Cultivadas , Citocinas/sangre , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Lipopolisacáridos , Masculino , Ratones Endogámicos C57BL
19.
Pulm Circ ; 8(1): 2045893217752329, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29261028

RESUMEN

The pulmonary vasculature plays an important role in many lung pathologies, such as pulmonary arterial hypertension, primary graft dysfunction of lung transplant, and acute respiratory distress syndrome. Therapy for these diseases is quite limited, largely due to dose-limiting side effects of numerous drugs that have been trialed or approved. High doses of drugs targeting the pulmonary vasculature are needed due to the lack of specific affinity of therapeutic compounds to the vasculature. To overcome this problem, the field of targeted drug delivery aims to target drugs to the pulmonary endothelial cells, especially those in pathological regions. The field uses a variety of drug delivery systems (DDSs), ranging from nano-scale drug carriers, such as liposomes, to methods of conjugating drugs to affinity moieites, such as antibodies. These DDSs can deliver small molecule drugs, protein therapeutics, and imaging agents. Here we review targeted drug delivery to the pulmonary endothelium for the treatment of pulmonary diseases. Cautionary notes are made of the risk-benefit ratio and safety-parameters one should keep in mind when developing a translational therapeutic.

20.
Drug Deliv Transl Res ; 8(4): 883-902, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29282646

RESUMEN

Vascular endothelial cells represent an important therapeutic target in many pathologies, including inflammation, oxidative stress, and thrombosis; however, delivery of drugs to this site is often limited by the lack of specific affinity of therapeutics for these cells. Selective delivery of both small molecule drugs and therapeutic proteins to the endothelium has been achieved through the use of targeting ligands, such as monoclonal antibodies, directed against endothelial cell surface markers, particularly cell adhesion molecules (CAMs). Careful selection of target molecules and targeting agents allows for precise delivery to sites of inflammation, thereby maximizing therapeutic drug concentrations at the site of injury. A good understanding of the physiological and pathological determinants of drug and drug carrier pharmacokinetics and biodistribution may allow for a priori identification of optimal properties of drug carrier and targeting agent. Targeted delivery of therapeutics such as antioxidants and antithrombotic agents to the injured endothelium has shown efficacy in preclinical models, suggesting the potential for translation into clinical practice. As with all therapeutics, demonstration of both efficacy and safety are required for successful clinical implementation, which must be considered not only for the individual components (drug, targeting agent, etc.) but also for the sum of the parts (e.g., the drug delivery system), as unexpected toxicities may arise with complex delivery systems. While the use of endothelial targeting has not been translated into the clinic to date, the preclinical results summarized here suggest that there is hope for successful implementation of these agents in the years to come.


Asunto(s)
Sistemas de Liberación de Medicamentos , Endotelio/metabolismo , Animales , Antioxidantes/administración & dosificación , Productos Biológicos/farmacocinética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...