Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Protein Expr Purif ; 161: 70-77, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31054315

RESUMEN

Transcription factors play a crucial role in control of life of a bacterial cell, working as switchers to a different life style or pathogenicity. To reconstruct the network of regulatory events taking place in changing growth conditions, we need to know regulons of as many transcription factors as possible, and motifs recognized by them. Experimentally this can be attained via ChIP-seq in vivo, SELEX and DNAse I footprinting in vitro. All these approaches require large amounts of purified proteins. However, overproduction of transcription factors leading to their extensive binding to the regulatory elements on the DNA make them toxic to a bacterial cell thus significantly complicating production of a soluble protein. Here, on the example of three regulators from Escherichia coli, UxuR, ExuR, and LeuO, we show that stable production of toxic transcription factors in a soluble fraction can be significantly enhanced by holding the expression of a recombinant protein back at the early stages of bacterial growth. This can be achieved by cloning genes together with their regulatory regions containing repressor sites, with subsequent growth in a very rich media where activity of excessive regulators is not crucial, followed by induction with a very low concentration of an inducer. Schemes of further purification of these proteins were developed, and functional activity was confirmed.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Escherichia coli/genética , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/toxicidad , Regulación Bacteriana de la Expresión Génica , Operón , Factores de Transcripción/metabolismo , Factores de Transcripción/toxicidad
2.
Sci Rep ; 8(1): 3177, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29453395

RESUMEN

Comparative genomics analysis of conserved gene cassettes demonstrated resemblance between a recently described cassette of genes involved in sulphoquinovose degradation in Escherichia coli K-12 MG1655 and a Bacilli cassette linked with lactose degradation. Six genes from both cassettes had similar functions related to carbohydrate metabolism, namely, hydrolase, aldolase, kinase, isomerase, transporter, and transcription factor. The Escherichia coli sulphoglycolysis cassette was thus predicted to be associated with lactose degradation. This prediction was confirmed experimentally: expression of genes coding for aldolase (yihT), isomerase (yihS), and kinase (yihV) was dramatically increased during growth on lactose. These genes were previously shown to be activated during growth on sulphoquinovose, so our observation may indicate multi-functional capabilities of the respective proteins. Transcription starts for yihT, yihV and yihW were mapped in silico, in vitro and in vivo. Out of three promoters for yihT, one was active only during growth on lactose. We further showed that switches in yihT transcription are controlled by YihW, a DeoR-family transcription factor in the Escherichia coli cassette. YihW acted as a carbon source-dependent dual regulator involved in sustaining the baseline growth in the absence of lac-operon, with function either complementary, or opposite to a global regulator of carbohydrate metabolism, cAMP-CRP.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos/genética , Lactosa/metabolismo , Metilglucósidos/metabolismo , Mapeo Cromosómico , Escherichia coli/enzimología , Transcripción Genética
3.
Molecules ; 22(11)2017 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-29113077

RESUMEN

The Dps protein of Escherichia coli, which combines ferroxidase activity and the ability to bind DNA, is effectively used by bacteria to protect their genomes from damage. Both activities depend on the integrity of this multi-subunit protein, which has an inner cavity for iron oxides; however, the diversity of its oligomeric forms has only been studied fragmentarily. Here, we show that iron ions stabilize the dodecameric form of Dps. This was found by electrophoretic fractionation and size exclusion chromatography, which revealed several oligomers in highly purified protein samples and demonstrated their conversion to dodecamers in the presence of 1 mM Mohr's salt. The transmission electron microscopy data contradicted the assumption that the stabilizing effect is given by the optimal core size formed in the inner cavity of Dps. The charge state of iron ions was evaluated using Mössbauer spectroscopy, which showed the presence of Fe3O4, rather than the expected Fe2O3, in the sample. Assuming that Fe2+ can form additional inter-subunit contacts, we modeled the interaction of FeO and Fe2O3 with Dps, but the binding sites with putative functionality were predicted only for Fe2O3. The question of how the dodecameric form can be stabilized by ferric oxides is discussed.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hierro/metabolismo , Sitios de Unión , Compuestos Férricos/metabolismo , Microscopía Electrónica de Transmisión , Modelos Moleculares , Simulación del Acoplamiento Molecular , Multimerización de Proteína , Estabilidad Proteica
4.
PLoS One ; 10(5): e0126504, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25978038

RESUMEN

Multifunctional protein Dps plays an important role in iron assimilation and a crucial role in bacterial genome packaging. Its monomers form dodecameric spherical particles accumulating ~400 molecules of oxidized iron ions within the protein cavity and applying a flexible N-terminal ends of each subunit for interaction with DNA. Deposition of iron is a well-studied process by which cells remove toxic Fe2+ ions from the genetic material and store them in an easily accessible form. However, the mode of interaction with linear DNA remained mysterious and binary complexes with Dps have not been characterized so far. It is widely believed that Dps binds DNA without any sequence or structural preferences but several lines of evidence have demonstrated its ability to differentiate gene expression, which assumes certain specificity. Here we show that Dps has a different affinity for the two DNA fragments taken from the dps gene regulatory region. We found by atomic force microscopy that Dps predominantly occupies thermodynamically unstable ends of linear double-stranded DNA fragments and has high affinity to the central part of the branched DNA molecule self-assembled from three single-stranded oligonucleotides. It was proposed that Dps prefers binding to those regions in DNA that provide more contact pads for the triad of its DNA-binding bundle associated with one vertex of the protein globule. To our knowledge, this is the first study revealed the nucleoid protein with an affinity to branched DNA typical for genomic regions with direct and inverted repeats. As a ubiquitous feature of bacterial and eukaryotic genomes, such structural elements should be of particular care, but the protein system evolutionarily adapted for this function is not yet known, and we suggest Dps as a putative component of this system.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hierro/metabolismo , ADN/metabolismo , Expresión Génica/fisiología , Microscopía de Fuerza Atómica/métodos , Modelos Moleculares , Unión Proteica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA