Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Anim Breed Genet ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39215551

RESUMEN

The strategy of combining reference populations has been widely recognized as an effective way to enhance the accuracy of genomic prediction (GP). This study investigated the efficiency of genomic prediction using prior information and combined reference population. In total, prior information considering trait-associated single nucleotide polymorphisms (SNPs) obtained from meta-analysis of genome-wide association studies (GWAS meta-analysis) was incorporated into three models to assess the performance of GP using combined reference populations. Two different Yorkshire populations with imputed whole genome sequence (WGS) data (9,741,620 SNPs), named as P1 (1259 individuals) and P2 (1018 individuals), were used to predict genomic estimated breeding values for three live carcass traits, including backfat thickness, loin muscle area, and loin muscle depth. A 10 × 5 fold cross-validation was used to evaluate the prediction accuracy of 203 randomly selected candidate pigs from the P2 population and the reference population consisted of the remaining pigs from P2 and the stepwise added pigs from P1. By integrating SNPs with different p-value thresholds from GWAS meta-analysis downloaded from PigGTEx Project, the prediction accuracy of GBLUP, genomic feature BLUP (GFBLUP) and GBLUP given genetic architecture (BLUP|GA) were compared. Moreover, we explored effects of reference population size and heritability enrichment of genomic features on the prediction accuracy improvement of GFBLUP and BLUP|GA relative to GBLUP. The prediction accuracy of GBLUP using all WGS markers showed average improvement of 4.380% using the P1 + P2 reference population compared with the P2 reference population. Using the combined reference population, GFBLUP and BLUP|GA yielded 6.179% and 5.525% higher accuracies than GBLUP using all SNPs based on the single reference population, respectively. Positive regression coefficients were estimated in relation to the improvement in prediction accuracy (between GFBLUP/BLUP|GA and GBLUP) and the size of the reference as well as the heritability enrichment of genomic features. Compared to the classic GBLUP model, GFBLUP and BLUP|GA models integrating GWAS meta-analysis information increase the prediction accuracy and using combined populations with enlarged reference population size further enhances prediction accuracy of the two approaches. The heritability enrichment of genomic features can be used as an indicator to reflect weather prior information is accurately presented.

2.
Animals (Basel) ; 14(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39199880

RESUMEN

The meat production traits of pigs are influenced by the expression regulation of multiple gene types, including mRNAs, miRNAs, and lncRNAs. To study the differences in meat production traits at the transcriptional level among individuals with different growth rates, the longissimus dorsi samples from eight Duroc × Bama Xiang F2 crossbred pigs with a fast growth rate (high gTroup) or a slow growth rate (low group) were selected to perform whole transcriptome sequencing and ceRNA regulatory network construction. This study first analyzed the differences in physiological and biochemical indicators, muscle histological characteristics, and muscle fiber types. A total of 248 mRNAs, 25 miRNAs, and 432 lncRNAs were identified as differentially expressed by whole transcriptome sequencing. Key genes that may influence meat production traits include MTMR14, PPP1R3A, PYGM, PGAM2, MYH1, and MYH7. The ceRNA regulatory network map showed that ENSSSCG00000042061-ssc-mir-208b-MYH7, ENSSSCG00000042223-ssc-mir-146a-MTMR14, ENSSSCG00000045539-ssc-mir-9-3-MYH1, and ENSSSCG00000047852-ssc-mir-103-1-PPP1R3A may be the key factors affecting meat production traits through their regulatory relationships. This study provides valuable insights into the molecular mechanisms underlying porcine muscle development and can aid in improving meat production traits.

3.
Animals (Basel) ; 14(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38254447

RESUMEN

The average daily weight gain (ADG) is considered a crucial indicator for assessing growth rates in the swine industry. Therefore, investigating the gastrointestinal microbiota and serum metabolites influencing the ADG in pigs is pivotal for swine breed selection. This study involved the inclusion of 350 purebred Yorkshire pigs (age: 90 ± 2 days; body weight: 41.20 ± 4.60 kg). Concurrently, serum and fecal samples were collected during initial measurements of blood and serum indices. The pigs were categorized based on their ADG, with 27 male pigs divided into high-ADG (HADG) and low-ADG (LADG) groups based on their phenotype values. There were 12 pigs in LADG and 15 pigs in HADG. Feces and serum samples were collected on the 90th day. Microbiome and non-targeted metabolomics analyses were conducted using 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS). Pearson correlation, with Benjamini-Hochberg (BH) adjustment, was employed to assess the associations between these variables. The abundance of Lactobacillus and Prevotella in LADG was significantly higher than in HADG, while Erysipelothrix, Streptomyces, Dubosiella, Parolsenella, and Adlercreutzia in LADG were significantly lower than in HADG. The concentration of glutamine, etiocholanolone glucuronide, and retinoyl beta-glucuronide in LADG was significantly higher than in HADG, while arachidonic acid, allocholic acid, oleic acid, phenylalanine, and methyltestosterone in LADG were significantly lower than in HADG. The Lactobacillus-Streptomyces networks (Lactobacillus, Streptomyces, methyltestosterone, phenylalanine, oleic acid, arachidonic acid, glutamine, 3-ketosphingosine, L-octanoylcarnitine, camylofin, 4-guanidinobutyrate 3-methylcyclopentadecanone) were identified as the most influential at regulating swine weight gain. These findings suggest that the gastrointestinal tract regulates the daily weight gain of pigs through the network of Lactobacillus and Streptomyces. However, this study was limited to fecal and serum samples from growing and fattening boars. A comprehensive consideration of factors affecting the daily weight gain in pig production, including gender, parity, season, and breed, is warranted.

4.
Animals (Basel) ; 13(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38136785

RESUMEN

Preselected variants associated with the trait of interest from genome-wide association studies (GWASs) are available to improve genomic prediction in pigs. The objectives of this study were to use preselected variants from a large GWAS meta-analysis to assess the impact of single-nucleotide polymorphism (SNP) preselection strategies on genome prediction of growth and carcass traits in pigs. We genotyped 1018 Large White pigs using medium (50k) SNP arrays and then imputed SNPs to sequence level by utilizing a reference panel of 1602 whole-genome sequencing samples. We tested the effects of different proportions of selected top SNPs across different SNP preselection strategies on genomic prediction. Finally, we compared the prediction accuracies by employing genomic best linear unbiased prediction (GBLUP), genomic feature BLUP and three weighted GBLUP models. SNP preselection strategies showed an average improvement in accuracy ranging from 0.3 to 2% in comparison to the SNP chip data. The accuracy of genomic prediction exhibited a pattern of initial increase followed by decrease, or continuous decrease across various SNP preselection strategies, as the proportion of selected top SNPs increased. The highest level of prediction accuracy was observed when utilizing 1 or 5% of top SNPs. Compared with the GBLUP model, the utilization of estimated marker effects from a GWAS meta-analysis as SNP weights in the BLUP|GA model improved the accuracy of genomic prediction in different SNP preselection strategies. The new SNP preselection strategies gained from this study bring opportunities for genomic prediction in limited-size populations in pigs.

5.
Vet Sci ; 10(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37235421

RESUMEN

Identifying and verifying appropriate biomarkers is instrumental in improving the prediction of early-stage pig production performance while reducing the cost of breeding and production. The main factor that affects the production cost and environmental protection cost of the pig industry is the feed efficiency of pigs. This study aimed to detect the differentially expressed proteins in the early blood index determination serum between high-feed efficiency and low-feed efficiency pigs and to provide a basis for further identification of biomarkers using the isobaric tandem mass tag and parallel reaction monitoring approach. In total, 350 (age, 90 ± 2 d; body weight, 41.20 ± 4.60 kg) purebred Yorkshire pigs were included in the study, and their serum samples were obtained during the early blood index determination. The pigs were then arranged based on their feed efficiency; 24 pigs with extreme phenotypes were grouped as high-feed efficiency and low-feed efficiency, with 12 pigs in each group. A total of 1364 proteins were found in the serum, and 137 of them showed differential expression between the groups with high- and low-feed efficiency, with 44 of them being upregulated and 93 being downregulated. PRM (parallel reaction monitoring) was used to verify 10 randomly chosen differentially expressed proteins. The proteins that were differentially expressed were shown to be involved in nine pathways, including the immune system, digestive system, human diseases, metabolism, cellular processing, and genetic information processing, according to the KEGG and GO analyses. Moreover, all of the proteins enriched in the immune system were downregulated in the high-feed efficiency pigs, suggesting that a higher immune level may not be conducive to improving feed efficiency in pigs. This study provides insights into the important feed efficiency proteins and pathways in pigs, promoting the further development of protein biomarkers for predicting and improving porcine feed efficiency.

6.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37047386

RESUMEN

The epigenetic regulation mechanism of porcine skeletal muscle development relies on the openness of chromatin and is also precisely regulated by transcriptional machinery. However, fewer studies have exploited the temporal changes in gene expression and the landscape of accessible chromatin to reveal the underlying molecular mechanisms controlling muscle development. To address this, skeletal muscle biopsy samples were taken from Landrace pigs at days 0 (D0), 60 (D60), 120 (D120), and 180 (D180) after birth and were then analyzed using RNA-seq and ATAC-seq. The RNA-seq analysis identified 8554 effective differential genes, among which ACBD7, TMEM220, and ATP1A2 were identified as key genes related to the development of porcine skeletal muscle. Some potential cis-regulatory elements identified by ATAC-seq analysis contain binding sites for many transcription factors, including SP1 and EGR1, which are also the predicted transcription factors regulating the expression of ACBD7 genes. Moreover, the omics analyses revealed regulatory regions that become ectopically active after birth during porcine skeletal muscle development after birth and identified 151,245, 53,435, 30,494, and 40,911 peaks. The enriched functional elements are related to the cell cycle, muscle development, and lipid metabolism. In summary, comprehensive high-resolution gene expression maps were developed for the transcriptome and accessible chromatin during postnatal skeletal muscle development in pigs.


Asunto(s)
Cromatina , Transcriptoma , Animales , Porcinos/genética , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética , Factores de Transcripción/metabolismo , Músculo Esquelético/metabolismo , Desarrollo de Músculos/genética
7.
Animals (Basel) ; 14(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38200843

RESUMEN

As one of the most critical economic traits, the litter performance of sows is influenced by their parity. Some studies have indicated a connection between the gut microbiota and the litter performance of animals. In this study, we examined litter performance in 1363 records of different parities of Large White sows. We observed a marked decline in TNB (Total Number Born) and NBH (Number of Healthy Born) We observed a marked decline in TNB (Total Number Born) and NBH (Number of Healthy Born) among sows with parity 7 or higher. To gain a deeper understanding of the potential role of gut microbiota in this phenomenon, we conducted 16S rRNA amplicon sequencing of fecal DNA from 263 Large White sows at different parities and compared the changes in their gut microbiota with increasing parity. The results revealed that in comparison to sows with a parity from one to six, sows with a parity of seven or higher exhibited decreased alpha diversity in their gut microbiota. There was an increased proportion of pathogenic bacteria (such as Enterobacteriaceae, Streptococcus, and Escherichia-Shigella) and a reduced proportion of SCFA-producing families (such as Ruminococcaceae), indicating signs of inflammatory aging. The decline in sow function may be one of the primary reasons for the reduction in their litter performance.

8.
AMB Express ; 10(1): 115, 2020 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-32562009

RESUMEN

Improving the predication efficiency of porcine production performance at early stage will contribute to reducing the breeding and production costs. The intestinal microbiota had received plenty of attention in recent years due to their influence on host health and performance. The purpose of this study was to investigate the relationship between the fecal microbiota at early growth period and porcine feed efficiency (FE) under a commercial feeding environment. Ninety-one pigs were reordered according to the residual feed intake (RFI) values between day 90 on test and day 160 off test, 9 lowest RFI pigs and 9 highest RFI pigs were selected as the LRFI group and the HRFI group, respectively. Fecal samples from pigs in the early grower phase (day 80) were performed for microbial diversity, composition, and predicted functionality by using 16S rRNA sequencing. The results showed that no significant differences in microbial alpha diversity were observed between two RFI groups, whereas, some RFI-associated compositional differences were revealed. In particular, the microbiota of the LRFI group (more feed-efficient) had significantly higher levels of some members of Clostridiales and Bacteroidales (e.g., g_1_68 and g_norank_f_p_2534_18B5), which may promoted FE through protecting gut barrier function, compared with those of the HRFI pigs. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis found that the LRFI pigs were likely have microbiota with higher levels of amino acid metabolism. Moreover, redundancy analysis (RDA) showed that litter size, parity, and date of birth had significant effects on the bacterial community structure. These results improved our knowledge of the porcine early-life fecal microbiota and its potential link underlying RFI, which would be useful for future development of microbial biomarkers for predicting and improving porcine FE as well as investigation of targets for dietary strategies.

9.
iScience ; 19: 162-176, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31376679

RESUMEN

Pig has been proved to be a valuable large animal model used for research on diabetic disease. However, their translational value is limited given their distinct anatomy and physiology. For the last 30 years, we have been developing a laboratory Asian miniature pig inbred line (Bama miniature pig [BM]) from the primitive Bama xiang pig via long-term selective inbreeding. Here, we assembled a BM reference genome at full chromosome-scale resolution with a total length of 2.49 Gb. Comparative and evolutionary genomic analyses identified numerous variations between the BM and commercial pig (Duroc), particularly those in the genetic loci associated with the features advantageous to diabetes studies. Resequencing analyses revealed many differentiated gene loci associated with inbreeding and other selective forces. These together with transcriptome analyses of diabetic pig models provide a comprehensive genetic basis for resistance to diabetogenic environment, especially related to energy metabolism.

10.
Gene ; 679: 81-89, 2018 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-30179680

RESUMEN

The Bama mini-pig (BM pig) is an inbred strain of the Bama Xiang pig (BX pig) and an important animal model used for studying human diseases. The extremely long inbreeding period renders a clear distinction between the features of the BM and BX strains, such as in their metabolism and olfactory system. However, there is limited information about differences between BM and BX animals at the genomic level. In this study, we generated genome sequencing data and used the assembly-vs-assembly approach to evaluate the phenotypic variations caused by inbreeding in these strains. Moreover, we detected differential expression of mutant genes related to the phenotypes in BX and BM pigs. We sequenced the genome of the BX pig strain and performed a series of analyses to reveal the comprehensive inbred genetic variants between BX and BM pigs. Here, the 2.56-Gb draft genome assembly for the BX pig and an N50 contig length of approximately 11.87 kb is described, and an N50 scaffold length of approximately 99 kb and the variations in the BX pig genome were identified by comparison with the BM pig reference genome. There were 1,424,354 single nucleotide polymorphisms (SNPs), 2,961,891 insertions and deletions (indels), 13,772 structural variants (SVs), and 20,606 copy number variants (CNVs) identified in the BX genome. Functional annotation of SVs and CNVs showed that the genes (ADGRE2, GPR143, olfactory receptor 52B4-like, olfactory receptor 10H1-like and SHROOM2) with both SVs and CNVs were enriched in the most of all KEGG pathways and gene ontology (GO) terms of mutant genes. ADGRE2, GPR143 and SHROOM2 were both found to have significant higher expression levels in BX pigs than in BM pigs. In the contrary, the expressions of olfactory receptor 52B4-like and olfactory receptor 10H1-like were significant lower in BX pigs than in BM pigs. In conclusion, sequence analysis of the BX pig genome revealed that the genome structure of the two pig strains has considerable genomic variation that was caused by the long inbreeding period. Moreover, qRT-PCR analysis of the mutant genes displayed a significant distinction that may be associated with phenotypic differences between these pig strains.


Asunto(s)
Variación Genética , Endogamia/métodos , Porcinos/genética , Secuenciación Completa del Genoma/métodos , Animales , Mapeo Cromosómico , Variaciones en el Número de Copia de ADN , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Tamaño del Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación INDEL , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
11.
Cell Reprogram ; 19(1): 19-26, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28055234

RESUMEN

The present study was undertaken to investigate the mechanisms by which Scriptaid treatment improves the developmental competence of somatic cell nuclear transfer (SCNT) mini-pig embryos in vitro. We found that treatment with 500 nmol/L Scriptaid for 15 hours significantly improved the development of mini-pig SCNT embryos. Compared with the control group, the blastocyst rate was higher (18.3% vs. 10.7%; p < 0.05). The acetylation level on H3K14 of the Scriptaid-treated group was higher compared with the control group in SCNT embryos at two-cell, four-cell, and blastocyst stages (p < 0.05). After Scriptaid treatment, histone deacetylase gene HDAC5 expression level was significantly decreased in four-cell embryos and blastocysts, while the expression levels of the embryos' development-related genes AKT, Oct4, and apoptosis inhibited gene PGC-1α were significantly increased in blastocysts (p < 0.05). The number of apoptotic cells per blastocyst in the Scriptaid-treated group was lower compared with the control group (p < 0.05). These results indicate that Scriptaid repressed HDCA5 gene expression, increased the acetylation level of H3K14, upregulated the expression of AKT, Oct4, and PGC-1α genes, improved embryos' development, and reduced apoptosis, which favors development of the SCNT mini-pig embryos to blastocysts.


Asunto(s)
Apoptosis/efectos de los fármacos , Blastocisto/citología , Embrión de Mamíferos/citología , Desarrollo Embrionario/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes del Desarrollo , Hidroxilaminas/farmacología , Técnicas de Transferencia Nuclear/veterinaria , Quinolinas/farmacología , Acetilación , Animales , Blastocisto/efectos de los fármacos , Blastocisto/metabolismo , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Femenino , Inhibidores de Histona Desacetilasas/farmacología , Histonas , Porcinos , Porcinos Enanos , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA