Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Bull (Beijing) ; 68(22): 2849-2861, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37852823

RESUMEN

Land cover changes (LCCs) affect surface temperatures at local scale through biophysical processes. However, previous observation-based studies mainly focused on the potential effects of virtual afforestation/deforestation using the space-for-time assumption, while the actual effects of all types of realistic LCCs are underexplored. Here, we adopted the space-and-time scheme and utilized extensive high-resolution (1-km) satellite observations to perform the first such assessment. We showed that, from 2006 to 2015, the average temperature in the areas with LCCs increased by 0.08 K globally, but varied significantly across latitudes, ranging from -0.05 to 0.18 K. Cropland expansions dominated summertime cooling effects in the northern mid-latitudes, whereas forest-related LCCs caused warming effects elsewhere. These effects accounted for up to 44.6% of overall concurrent warming, suggesting that LCC influences cannot be ignored. In addition, we revealed obvious asymmetries in the actual effects, i.e., LCCs with warming effects occurred more frequently, with stronger intensities, than LCCs with cooling effects. Even for the mutual changes between two covers in the same region, warming LCCs generally had larger magnitudes than their cooling counterparts due to asymmetric changes in transition fractions and driving variables. These novel findings, derived from the assessment of actual LCCs, provide more realistic implications for land management and climate adaptation policies.

2.
Sci Total Environ ; 618: 819-828, 2018 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-29132719

RESUMEN

Satellite-derived aerosol optical depth (AOD) has been proven effective for estimating ground-level particles with an aerodynamic diameter <2.5µm (PM2.5) concentrations. Using a time fixed effects regression model, we compared the capacity of two AOD sources, Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS), to estimate ground-level PM2.5 concentrations over a heavily polluted region in China. Regarding high-quality AOD data, the results show that the VIIRS model performs better than the MODIS model with respect to all model accuracy evaluation indexes (e.g., the coefficient of determination, R2, of the VIIRS and MODIS models are 0.76 and 0.71 during model fitting and 0.72 and 0.66 in cross validation, respectively), the potential for capturing high PM2.5 concentrations, and the precision of annual and seasonal PM2.5 estimates. However, the spatiotemporal coverage of the high-quality VIIRS AOD is inferior to that of the MODIS AOD. We attempted to include medium-quality VIIRS AOD data to eliminate this, while exploring its influence on the performance of the VIIRS model. The results show that it improves the spatiotemporal coverage of the VIIRS AOD dramatically especially in winter, although a decline in model accuracy occurred. Compared to the MODIS model, the VIIRS model with both high-quality and medium-quality AOD data performs comparably or even better with respect to some model accuracy evaluation indexes (e.g., the model overfitting degree of the VIIRS and MODIS models are 7.46% and 5.82%, respectively), the potential for capturing high PM2.5 concentrations, and the precision of annual and seasonal PM2.5 estimates. Nevertheless, the VIIRS models did not perform as well as the MODIS model in summer. This study reveals the advantages and disadvantages of the MODIS and VIIRS AOD in simulating ground-level PM2.5 concentrations, promoting research on satellite-based PM2.5 estimates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...