Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38998196

RESUMEN

Shape Memory Alloys (SMAs) are used to design actuators, which are one of the most fascinating applications of SMA. Usually, they are on-off actuators because, in the case of continuous actuators, the nonlinearity of their characteristics is the problem. The main problem, especially in control systems in these actuators, is a hysteretic loop. There are many models of hysteresis, but from a control theory point of view, they are not helpful. This study used an artificial neural network (ANN) to model the SMA actuator hysteresis. The ANN structure and training method are presented in the paper. Data were generated from the Preisach model for training. This approach allowed for quick and controllable data generation, making experiments thoroughly planned and repeatable. The advantage and disadvantage of this approach is the lack of disturbances. The paper's main goal is to model an SMA actuator. Additionally, it explores whether and how an ANN can describe and model the hysteresis loop. A literature review shows that ANNs are used to model hysteresis, but to a limited extent; this means that the hysteresis loop was modelled with a hysteretic element.

2.
Materials (Basel) ; 14(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34640302

RESUMEN

Vibration suppression, as well as its generation, is a common subject of scientific investigations. More and more often, but still rarely, shape memory alloys (SMAs) are used in vibrating systems, despite the fact that SMA springs have many advantages. This is due to the difficulty of the mathematical description and the considerable effortfulness of analysing and synthesising vibrating systems. The article shows the analysis of vibrating systems in which spring elements made of SMAs are used. The modelling and analysis method of vibrating systems is shown in the example of a vibrating system with a dynamic vibration absorber (DVA), which uses springs made of a shape memory alloy. The formulated mathematical model of a 2-DOF system with a controlled spring, mounted in DVA suspension, uses the viscoelastic model of the SMA spring. For the object, a control system was synthesised. Finally, model tests with and without a controller were carried out. The characteristics of the vibrations' transmissibility functions for both systems were determined. It was shown that the developed DVA can tune to frequency excitation changes of up to ±10%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA