Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(11): eadg9278, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478616

RESUMEN

Canonical Wnt and sphingosine-1-phosphate (S1P) signaling pathways are highly conserved systems that contribute to normal vertebrate development, with key consequences for immune, nervous, and cardiovascular system function; despite these functional overlaps, little is known about Wnt/ß-catenin-S1P cross-talk. In the vascular system, both Wnt/ß-catenin and S1P signals affect vessel maturation, stability, and barrier function, but information regarding their potential coordination is scant. We report an instance of functional interaction between the two pathways, including evidence that S1P receptor 1 (S1PR1) is a transcriptional target of ß-catenin. By studying vascular smooth muscle cells and arterial injury response, we find a specific requirement for the ß-catenin carboxyl terminus, which acts to induce S1PR1, and show that this interaction is essential for vascular remodeling. We also report that pharmacological inhibition of the ß-catenin carboxyl terminus reduces S1PR1 expression, neointima formation, and atherosclerosis. These findings provide mechanistic understanding of how Wnt/ß-catenin and S1P systems collaborate during vascular remodeling and inform strategies for therapeutic manipulation.


Asunto(s)
Aterosclerosis , Cateninas , Lisofosfolípidos , Esfingosina/análogos & derivados , Humanos , Cateninas/metabolismo , beta Catenina/metabolismo , Remodelación Vascular , Transducción de Señal
2.
Cells ; 12(12)2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37371091

RESUMEN

Vascular smooth muscle cells (VSMCs) are normally quiescent and non-migratory, regulating the contraction and relaxation of blood vessels to control the vascular tone. In response to arterial injury, these cells become active; they proliferate, secrete matrix proteins, and migrate, and thereby contribute importantly to the progression of several cardiovascular diseases. VSMC migration specifically supports atherosclerosis, restenosis after catheter-based intervention, transplant vasculopathy, and vascular remodeling during the formation of aneurysms. The atypical cadherin FAT1 is expressed robustly in activated VSMCs and promotes their migration. A positive role of FAT1 in the migration of other cell types, including neurons, fibroblasts, podocytes, and astrocyte progenitors, has also been described. In cancer biology, however, the effect of FAT1 on migration depends on the cancer type or context, as FAT1 either suppresses or enhances cancer cell migration and invasion. With this review, we describe what is known about FAT1's effects on cell migration as well as the factors that influence FAT1-dependent migration. In VSMCs, these factors include angiotensin II, which activates FAT1 expression and cell migration, and proteins of the Atrophin family: Atrophin-1 and the short isoform of Atrophin-2, which promote VSMC migration, and the long isoform of Atrophin-2, which exerts negative effects on FAT1-dependent VSMC migration.


Asunto(s)
Aterosclerosis , Cadherinas , Humanos , Cadherinas/metabolismo , Músculo Liso Vascular/metabolismo , Movimiento Celular , Aterosclerosis/metabolismo , Isoformas de Proteínas/metabolismo
3.
Biochem Pharmacol ; 212: 115571, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37127250

RESUMEN

The unsatisfactory rates of adequate blood pressure control among patients receiving antihypertensive treatment calls for new therapeutic strategies to treat hypertension. Several studies have shown that oral sodium nitrite exerts significant antihypertensive effects, but the mechanisms underlying these effects remain unclear. While these mechanisms may involve nitrite-derived S-nitrosothiols, their implication in important alterations associated with hypertension, such as aberrant α1-adrenergic vasoconstriction, has not yet been investigated. Here, we examined the effects of oral nitrite treatment on vascular responses to the α1-adrenergic agonist phenylephrine in two-kidney, one clip (2K1C) hypertensive rats and investigated the potential underlying mechanisms. Our results show that treatment with oral sodium nitrite decreases blood pressure and prevents the increased α1-adrenergic vasoconstriction in 2K1C hypertensive rats. Interestingly, we found that these effects require vascular protein S-nitrosylation, and to investigate the specific S-nitrosylated proteins we performed an unbiased nitrosoproteomic analysis of vascular smooth muscle cells (VSMCs) treated with the nitrosylating compound S-nitrosoglutathione (GSNO). This analysis revealed that GSNO markedly increases the nitrosylation of calcium/calmodulin-dependent protein kinase II γ (CaMKIIγ), a multifunctional protein that mediates the α1-adrenergic receptor signaling. This result was associated with reduced α1-adrenergic receptor-mediated CaMKIIγ activity in VSMCs. We further tested the relevance of these findings in vivo and found that treatment with oral nitrite increases CaMKIIγ S-nitrosylation and blunts the increased CaMKIIγ activity induced by phenylephrine in rat aortas. Collectively, these results are consistent with the idea that oral sodium nitrite treatment increases vascular protein S-nitrosylation, including CaMKIIγ as a target, which may ultimately prevent the increased α1-adrenergic vasoconstriction induced by hypertension. These mechanisms may help to explain the antihypertensive effects of oral nitrite and hold potential implications in the therapy of hypertension and other cardiovascular diseases associated with abnormal α1-adrenergic vasoconstriction.


Asunto(s)
Hipertensión , Nitrito de Sodio , Ratas , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Vasoconstricción , Calcio , Adrenérgicos/farmacología , Adrenérgicos/uso terapéutico , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Hipertensión/prevención & control , Fenilefrina/farmacología , Receptores Adrenérgicos/uso terapéutico , Receptores Adrenérgicos alfa 1/metabolismo
4.
Nat Commun ; 14(1): 38, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36596796

RESUMEN

Recent studies implicate macrophages in regulation of thermogenic, sympathetic neuron-mediated norepinephrine (NE) signaling in adipose tissues, but understanding of such non-classical macrophage activities is incomplete. Here we show that male mice lacking the allograft inflammatory factor-1 (AIF1) protein resist high fat diet (HFD)-induced obesity and hyperglycemia. We link this phenotype to higher adipose NE levels that stem from decreased monoamine oxidase A (MAOA) expression and NE clearance by AIF1-deficient macrophages, and find through reciprocal bone marrow transplantation that donor Aif1-/- vs WT genotype confers the obesity phenotype in mice. Interestingly, human sequence variants near the AIF1 locus associate with obesity and diabetes; in adipose samples from participants with obesity, we observe direct correlation of AIF1 and MAOA transcript levels. These findings identify AIF1 as a regulator of MAOA expression in macrophages and catecholamine activity in adipose tissues - limiting energy expenditure and promoting energy storage - and suggest how it might contribute to human obesity.


Asunto(s)
Tejido Adiposo , Catecolaminas , Obesidad , Animales , Humanos , Masculino , Ratones , Tejido Adiposo/metabolismo , Adiposidad , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Catecolaminas/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Norepinefrina/metabolismo , Obesidad/genética , Obesidad/metabolismo
5.
iScience ; 25(10): 105058, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36134334

RESUMEN

Mouse models enable the study of genetic factors affecting the complex pathophysiology of metabolic disorders. Here, we identify reductions in leptin levels, food intake, and obesity due to high-fat diet, accompanied by increased leptin sensitivity, in mice that harbor the E2a-Cre transgene within Obrq2, an obesity quantitative trait locus (QTL) that includes the leptin gene. Interestingly, loss of allograft inflammatory factor-1-like (AIF1L) protein in these transgenic mice leads to similar leptin sensitivity, yet marked reversal of the obesity phenotype, with accelerated weight gain and increased food intake. Transgenic mice lacking AIF1L also have low circulating leptin, which suggests that benefits of enhanced leptin sensitivity are lost with further impairment of leptin expression due to loss of AIF1L. Together, our results identify AIF1L as a genetic modifier of Obrq2 and leptin that affects leptin levels, food intake, and obesity during the metabolic stress imposed by HFD.

6.
Front Cardiovasc Med ; 9: 905717, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35647082

RESUMEN

Smooth muscle cells contribute to cardiovascular disease, the leading cause of death worldwide. The capacity of these cells to undergo phenotypic switching in mature arteries of the systemic circulation underlies their pathogenic role in atherosclerosis and restenosis, among other vascular diseases. Growth factors and cytokines, extracellular matrix components, regulation of gene expression, neuronal influences, and mechanical forces contribute to smooth muscle cell phenotypic switching. Comparatively little is known about cell metabolism in this process. Studies of cancer and endothelial cell biology have highlighted the importance of cellular metabolic processes for phenotypic transitions that accompany tumor growth and angiogenesis. However, the understanding of cell metabolism during smooth muscle cell phenotypic modulation is incipient. Studies of the atypical cadherin FAT1, which is strongly upregulated in smooth muscle cells in response to arterial injury, suggest that it has important and distinctive functions in this context, mediating control of both smooth muscle cell mitochondrial metabolism and cell proliferation. Here we review the progress made in understanding how FAT1 affects the smooth muscle cell phenotype, highlighting the significance of FAT1 as a processed protein and unexpected regulator of mitochondrial respiration. These mechanisms suggest how a transmembrane protein may relay signals from the extracellular milieu to mitochondria to control metabolic activity during smooth muscle cell phenotypic switching.

7.
Proc Natl Acad Sci U S A ; 119(14): e2121133119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35363568

RESUMEN

Chaperone-mediated autophagy (CMA) contributes to regulation of energy homeostasis by timely degradation of enzymes involved in glucose and lipid metabolism. Here, we report reduced CMA activity in vascular smooth muscle cells and macrophages in murine and human arteries in response to atherosclerotic challenges. We show that in vivo genetic blockage of CMA worsens atherosclerotic pathology through both systemic and cell-autonomous changes in vascular smooth muscle cells and macrophages, the two main cell types involved in atherogenesis. CMA deficiency promotes dedifferentiation of vascular smooth muscle cells and a proinflammatory state in macrophages. Conversely, a genetic mouse model with up-regulated CMA shows lower vulnerability to proatherosclerotic challenges. We propose that CMA could be an attractive therapeutic target against cardiovascular diseases.


Asunto(s)
Aterosclerosis , Autofagia Mediada por Chaperones , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Autofagia Mediada por Chaperones/genética , Modelos Animales de Enfermedad , Lisosomas/metabolismo , Ratones
8.
Methods Mol Biol ; 2419: 841-851, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35238005

RESUMEN

Although arteries and atherosclerotic plaques are three-dimensional structures, the evaluation of plaque size and morphology in preclinical models of atherosclerosis is typically performed in two dimensions by histological analysis. Here, we describe a method to visualize arteries and atherosclerotic plaques in three dimensions. This method combines AdipoClear, a procedure that achieves whole tissue immunolabeling and clearing, and light-sheet fluorescence microscopy, which generates a three-dimensional reconstruction of vessel architecture including atherosclerotic lesions if present. This approach reveals the volume, geometry, acellular component and surface of atherosclerotic plaques as well as the spatial position of the lesion in relation to the affected artery.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Arterias , Humanos , Imagenología Tridimensional/métodos , Microscopía Fluorescente/métodos , Placa Aterosclerótica/diagnóstico por imagen
9.
J Clin Invest ; 132(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104806

RESUMEN

About 6 million adults in the United States have heart failure, and the mortality five years after diagnosis remains high at approximately 50%. Incomplete understanding of disease pathogenesis limits therapeutics, especially in the case of heart failure with preserved ejection fraction, a condition commonly associated with cardiac hypertrophy. Neutrophils, the most abundant leukocyte in blood, have functions beyond antimicrobial activity and participate in both sterile inflammation and disease; however, their role in nonischemic cardiac hypertrophy and heart failure is underexplored. In this issue of the JCI, Tang et al. show that neutrophil extracellular trap (NET) formation contributes to cardiac hypertrophy and dysfunction in a mouse model of angiotensin II-induced cardiomyopathy, and that Krüppel-like factor 2 (KLF2) functions in neutrophils to oppose this process. Whether a neutrophil-centered strategy may benefit patients with cardiac hypertrophy and failure deserves further investigation.


Asunto(s)
Trampas Extracelulares , Insuficiencia Cardíaca , Animales , Cardiomegalia/genética , Insuficiencia Cardíaca/patología , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Neutrófilos/patología , Función Ventricular Izquierda
10.
Cardiovasc Res ; 118(12): 2718-2731, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34478521

RESUMEN

AIMS: Graft vascular disease (GVD), a clinically important and highly complex vascular occlusive disease, arises from the interplay of multiple cellular and molecular pathways. While occlusive intimal lesions are composed predominantly of smooth-muscle-like cells (SMLCs), the origin of these cells and the stimuli leading to their accumulation in GVD are uncertain. Macrophages have recently been identified as both potential drivers of intimal hyperplasia and precursors that undergo transdifferentiation to become SMLCs in non-transplant settings. Colony-stimulating factor-1 (CSF1) is a well-known regulator of macrophage development and differentiation, and prior preclinical studies have shown that lack of CSF1 limits GVD. We sought to identify the origins of SMLCs and of cells expressing the CSF1 receptor (CSF1R) in GVD, and to test the hypothesis that pharmacologic inhibition of CSF1 signalling would curtail both macrophage and SMLC activities and decrease vascular occlusion. METHODS AND RESULTS: We used genetically modified mice and a vascular transplant model with minor antigen mismatch to assess cell origins. We found that neointimal SMLCs derive from both donor and recipient, and that transdifferentiation of macrophages to SMLC phenotype is minimal in this model. Cells expressing CSF1R in grafts were identified as recipient-derived myeloid cells of Cx3cr1 lineage, and these cells rarely expressed smooth muscle marker proteins. Blockade of CSF1R activity using the tyrosine kinase inhibitor PLX3397 limited the expression of genes associated with innate immunity and decreased levels of circulating monocytes and intimal macrophages. Importantly, PLX3397 attenuated the development of GVD in arterial allografts. CONCLUSION: These studies provide proof of concept for pharmacologic inhibition of the CSF1/CSF1R signalling pathway as a therapeutic strategy in GVD. Further preclinical testing of this pathway in GVD is warranted.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos , Remodelación Vascular , Aminopiridinas/farmacología , Animales , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/metabolismo , Factor Estimulante de Colonias de Macrófagos/farmacología , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Pirroles/farmacología , Proteínas Tirosina Quinasas Receptoras
11.
J Heart Lung Transplant ; 41(2): 129-132, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34911655

RESUMEN

Angiodysplasias (AGD) are common sites of bleeding in the gastrointestinal (GI) tract after Continuous Flow Left Ventricular Assist Device (CF-LVAD) implantation. We sought to investigate whether AGDs are formed as a result of LVAD physiology or preexist as a consequence of heart failure. Thirty-six subjects with HF reduced EF (HFrEF) underwent video capsule endoscopy (VCE) to assess for the presence of AGD. Fifty-three subjects without HF who underwent VCE for a nonbleeding indication formed a control group. The prevalence of AGD was significantly higher in the HFrEF compared to the non-HF controls (50% vs 13%, p = 0.0002). This association persisted after controlling for age and comorbidities. Within the HFrEF cohort, higher Ang2, NT-proBNP and BUN were associated with the presence of AGD. AGD in the GI tract are associated with HFrEF. This is the first description of a new pathology associated with HFrEF and adds to our understanding of CF LVAD associated GI bleeding.


Asunto(s)
Hemorragia Gastrointestinal/etiología , Tracto Gastrointestinal/irrigación sanguínea , Insuficiencia Cardíaca/terapia , Corazón Auxiliar/efectos adversos , Volumen Sistólico/fisiología , Función Ventricular Izquierda/fisiología , Colonoscopía/métodos , Femenino , Estudios de Seguimiento , Hemorragia Gastrointestinal/diagnóstico , Hemorragia Gastrointestinal/epidemiología , Insuficiencia Cardíaca/fisiopatología , Humanos , Incidencia , Masculino , Persona de Mediana Edad , New York/epidemiología , Estudios Retrospectivos , Factores de Riesgo
12.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34764226

RESUMEN

Growing evidence indicates that microglia impact brain function by regulating synaptic pruning and formation as well as synaptic transmission and plasticity. Iba1 (ionized Ca+2-binding adapter protein 1), encoded by the Allograft inflammatory factor 1 (Aif1) gene, is an actin-interacting protein in microglia. Although Iba1 has long been used as a cellular marker for microglia, its functional role remains unknown. Here, we used global, Iba1-deficient (Aif1-/-) mice to characterize microglial activity, synaptic function, and behavior. Microglial imaging in acute hippocampal slices and fixed tissues from juvenile mice revealed that Aif1-/- microglia display reductions in ATP-induced motility and ramification, respectively. Biochemical assays further demonstrated that Aif1-/- brain tissues exhibit an altered expression of microglial-enriched proteins associated with synaptic pruning. Consistent with these changes, juvenile Aif1-/- mice displayed deficits in the excitatory synapse number and synaptic drive assessed by neuronal labeling and whole-cell patch-clamp recording in acute hippocampal slices. Unexpectedly, microglial synaptic engulfment capacity was diminished in juvenile Aif1-/- mice. During early postnatal development, when synapse formation is a predominant event in the hippocampus, the excitatory synapse number was still reduced in Aif1-/- mice. Together, these findings support an overall role of Iba1 in excitatory synaptic growth in juvenile mice. Lastly, postnatal synaptic deficits persisted in adulthood and correlated with significant behavioral changes in adult Aif1-/- mice, which exhibited impairments in object recognition memory and social interaction. These results suggest that Iba1 critically contributes to microglial activity underlying essential neuroglia developmental processes that may deeply influence behavior.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Hipocampo/metabolismo , Proteínas de Microfilamentos/metabolismo , Microglía/metabolismo , Sinapsis/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Fagocitosis/fisiología , Transmisión Sináptica/fisiología
13.
Kidney360 ; 2(2): 279-289, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34723191

RESUMEN

BACKGROUND: A better understanding of the pathophysiology involving coronary artery calcification (CAC) in patients on hemodialysis (HD) will help to develop new therapies. We sought to identify the differences in metabolomics profiles between patients on HD with and without CAC. METHODS: In this case-control study, nested within a cohort of 568 incident patients on HD, the cases were patients without diabetes with a CAC score >100 (n=51), and controls were patients without diabetes with a CAC score of zero (n=48). We measured 452 serum metabolites in each participant. Metabolites and pathway scores were compared using Mann-Whitney U tests, partial least squares-discriminant analyses, and pathway enrichment analyses. RESULTS: Compared with controls, cases were older (64±13 versus 42±12 years) and were less likely to be Black (51% versus 94%). We identified three metabolites in bile-acid synthesis (chenodeoxycholic, deoxycholic, and glycolithocholic acids) and one pathway (arginine/proline metabolism). After adjusting for demographics, higher levels of chenodeoxycholic, deoxycholic, and glycolithocholic acids were associated with higher odds of having CAC; comparing the third with the first tertile of each bile acid, the OR was 6.34 (95% CI, 1.12 to 36.06), 6.73 (95% CI, 1.20 to 37.82), and 8.53 (95% CI, 1.50 to 48.49), respectively. These associations were no longer significant after further adjustment for coronary artery disease and medication use. Per 1 unit higher in the first principal component score, arginine/proline metabolism was associated with CAC after adjusting for demographics (OR, 1.83; 95% CI, 1.06 to 3.15), and the association remained significant with additional adjustments for statin use (OR, 1.84; 95% CI, 1.04 to 3.27). CONCLUSIONS: Among patients on HD without diabetes mellitus, chenodeoxycholic, deoxycholic, and glycolithocholic acids may be potential biomarkers for CAC, and arginine/proline metabolism is a plausible mechanism to study for CAC. These findings need to be confirmed in future studies.


Asunto(s)
Enfermedad de la Arteria Coronaria , Calcificación Vascular , Biomarcadores , Estudios de Casos y Controles , Humanos , Metabolómica , Diálisis Renal/efectos adversos
14.
Wellcome Open Res ; 6: 52, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33824914

RESUMEN

Background: Metastatic breast cancer cells recruit macrophages (metastasis-associated macrophages, or MAMs) to facilitate their seeding, survival and outgrowth. However, a comprehensive understanding of the gene expression program in MAMs and how this program contributes to metastasis remain elusive. Methods: We compared the transcriptomes of MAMs recruited to lung metastases and resident alveolar macrophages (RAMs) and identified a large variety of differentially expressed genes and their associated signaling pathways. Some of the changes were validated using qRT-PCR and immunofluorescence. To probe the functional relevance to metastatic growth, a gene-targeting mouse model of female mice in the C57BL6/J background was used to study allograft inflammatory factor 1 (AIF1, also known as ionized calcium-binding adapter molecule 1 or IBA1). Results: Interferon signaling is one of the most activated pathways in MAMs, with strong upregulation of multiple components of the pathway and a significant enrichment for the gene signatures of interferon-alpha-treated human macrophages. Aif1, an interferon-responsive gene that regulates multiple macrophage activities, was robustly induced in MAMs. Aif1 deficiency in MAMs, however, did not affect development of lung metastases, suggesting that AIF1 indicates MAM activation but is dispensable for regulating metastasis. Conclusions: The drastically different gene expression profile of MAMs as compared to RAMs suggests an important role in promoting metastatic growth. Dissection of the underlying mechanisms and functional validation of potential targets in the profile may provide novel therapeutic strategies for the treatment of metastatic diseases.

15.
Sci Rep ; 10(1): 3594, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32107417

RESUMEN

The allograft inflammatory factor (AIF) gene family consists of two identified paralogs - AIF1 and AIF1-like (AIF1L). The encoded proteins, AIF1 and AIF1L, are 80% similar in sequence and show conserved tertiary structure. While studies in human populations suggest links between AIF1 and metabolic diseases such as obesity and diabetes, such associations with AIF1L have not been reported. Drawing parallels based on structural similarity, we postulated that AIF1L might contribute to metabolic disorders, and studied it using mouse models. Here we report that AIF1L is expressed in major adipose depots and kidney but was not detectable in liver or skeletal muscle; in notable contrast to AIF1, AIF1L was also not found in spleen. Studies of AIF1L deficient mice showed no obvious postnatal developmental phenotype. In response to high fat diet (HFD) feeding for 6 or 18 weeks, WT and AIF1L deficient mice gained weight similarly, showed no differences in fat or lean mass accumulation, and displayed no changes in energy expenditure or systemic glucose handling. These findings indicate that AIF1L is not essential for the development of obesity or impaired glucose handling due to HFD, and advance understanding of this little-studied gene and its place in the AIF gene family.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Intolerancia a la Glucosa/metabolismo , Hígado/metabolismo , Proteínas de Microfilamentos/metabolismo , Obesidad/metabolismo , Aumento de Peso/fisiología , Animales , Proteínas de Unión al Calcio/genética , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Metabolismo Energético , Humanos , Resistencia a la Insulina , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Obesidad/genética
16.
Circ Res ; 126(5): 619-632, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31914850

RESUMEN

RATIONALE: Remodeling of the vessel wall and the formation of vascular networks are dynamic processes that occur during mammalian embryonic development and in adulthood. Plaque development and excessive neointima formation are hallmarks of atherosclerosis and vascular injury. As our understanding of these complex processes evolves, there is a need to develop new imaging techniques to study underlying mechanisms. OBJECTIVE: We used tissue clearing and light-sheet microscopy for 3-dimensional (3D) profiling of the vascular response to carotid artery ligation and induction of atherosclerosis in mouse models. METHODS AND RESULTS: Adipo-Clear and immunolabeling in combination with light-sheet microscopy were applied to image carotid arteries and brachiocephalic arteries, allowing for 3D reconstruction of vessel architecture. Entire 3D neointima formations with different geometries were observed within the carotid artery and scored by volumetric analysis. Additionally, we identified a CD31-positive adventitial plexus after ligation of the carotid artery that evolved and matured over time. We also used this method to characterize plaque extent and composition in the brachiocephalic arteries of ApoE-deficient mice on high-fat diet. The plaques exhibited inter-animal differences in terms of plaque volume, geometry, and ratio of acellular core to plaque volume. A 3D reconstruction of the endothelium overlying the plaque was also generated. CONCLUSIONS: We present a novel approach to characterize vascular remodeling in adult mice using Adipo-Clear in combination with light-sheet microscopy. Our method reconstructs 3D neointima formation after arterial injury and allows for volumetric analysis of remodeling, in addition to revealing angiogenesis and maturation of a plexus surrounding the carotid artery. This method generates complete 3D reconstructions of atherosclerotic plaques and uncovers their volume, geometry, acellular component, surface, and spatial position within the brachiocephalic arteries. Our approach may be used in a number of mouse models of cardiovascular disease to assess vessel geometry and volume. Visual Overview: An online visual overview is available for this article.


Asunto(s)
Arterias Carótidas/diagnóstico por imagen , Imagenología Tridimensional/métodos , Neovascularización Fisiológica , Imagen Óptica/métodos , Placa Aterosclerótica/diagnóstico por imagen , Animales , Apolipoproteínas E/genética , Variación Biológica Poblacional , Arterias Carótidas/patología , Arterias Carótidas/fisiología , Dieta Alta en Grasa/efectos adversos , Imagenología Tridimensional/normas , Ratones , Ratones Endogámicos C57BL , Neointima/diagnóstico por imagen , Neointima/patología , Imagen Óptica/normas , Placa Aterosclerótica/etiología , Remodelación Vascular
17.
Atherosclerosis ; 289: 184-194, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31439353

RESUMEN

BACKGROUND AND AIMS: Allograft inflammatory factor-1 (AIF1) has been characterized as a pro-inflammatory molecule expressed primarily in the monocyte/macrophage (MP) lineage and positively associated with various forms of vascular disease, including atherosclerosis. Studies of AIF1 in atherosclerosis have relied on mouse models in which AIF1 was overexpressed in either myeloid or smooth muscle cells, resulting in increased atherosclerotic plaque burden. How physiologic expression of AIF1 contributes to MP biology in atherogenesis is not known. METHODS: Effects of global AIF1 deficiency on atherosclerosis were assessed by crossing Aif1-/- and ApoE-/- mice, and provoking hyperlipidemia with high fat diet feeding. Atherosclerotic plaques were studied en face and in cross section. Bone marrow-derived MPs (BMDMs) were isolated from Aif1-/- mice for study in culture. RESULTS: Atherosclerotic plaques in Aif1-/-;ApoE-/- mice showed larger necrotic cores compared to those in ApoE-/- animals, without change in overall lesion burden. In vitro, lack of AIF1 reduced BMDM survival, phagocytosis, and efferocytosis. Mechanistically, AIF1 supported activation of the NF-κB pathway and expression of related target genes involved in stress response, inflammation, and apoptosis. Consistent with this in vitro BMDM phenotype, AIF1 deficiency reduced NF-κB pathway activity in vivo and increased apoptotic cell number in atherosclerotic lesions from Aif1-/-;ApoE-/- mice. CONCLUSIONS: These findings characterize AIF1 as a positive regulator of the NF-κB pathway that supports MP functions such as survival and efferocytosis. In inflammatory settings such as atherosclerosis, these AIF1-dependent activities serve to clear cellular and other debris and limit necrotic core expansion, and may oppose lesion destabilization.


Asunto(s)
Aterosclerosis/patología , Proteínas de Unión al Calcio/metabolismo , Macrófagos/citología , Proteínas de Microfilamentos/metabolismo , Animales , Apoptosis , Aterosclerosis/metabolismo , Células de la Médula Ósea/citología , Supervivencia Celular , Cruzamientos Genéticos , Femenino , Perfilación de la Expresión Génica , Humanos , Inflamación , Lipoproteínas LDL/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , FN-kappa B/metabolismo , Necrosis , Fagocitosis , Transducción de Señal
18.
J Mol Cell Cardiol ; 123: 150-158, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30201295

RESUMEN

Abnormal endocardial cushion formation is a major cause of congenital heart valve disease, which is a common birth defect with significant morbidity and mortality. Although ß-catenin and BMP2 are two well-known regulators of endocardial cushion formation, their interaction in this process is largely unknown. Here, we report that deletion of ß-catenin in myocardium results in formation of hypoplastic endocardial cushions accompanying a decrease of mesenchymal cell proliferation. Loss of ß-catenin reduced Bmp2 expression in myocardium and SMAD signaling in cushion mesenchyme. Exogenous BMP2 recombinant proteins fully rescued the proliferation defect of mesenchymal cells in cultured heart explants from myocardial ß-catenin knockout embryos. Using a canonical WNT signaling reporter mouse line, we showed that cushion myocardium exhibited high WNT/ß-catenin activities during endocardial cushion growth. Selective disruption of the signaling function of ß-catenin resulted in a cushion growth defect similar to that caused by the complete loss of ß-catenin. Together, these observations demonstrate that myocardial ß-catenin signaling function promotes mesenchymal cell proliferation and endocardial cushion expansion through inducing BMP signaling.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Cojinetes Endocárdicos/metabolismo , Miocardio/metabolismo , Organogénesis , Transducción de Señal , beta Catenina/metabolismo , Animales , Proliferación Celular , Cojinetes Endocárdicos/embriología , Endocardio/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Modelos Biológicos , Comunicación Paracrina , Ratas , Vía de Señalización Wnt
20.
Nat Genet ; 49(10): 1437-1449, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28892060

RESUMEN

A major challenge in inflammatory bowel disease (IBD) is the integration of diverse IBD data sets to construct predictive models of IBD. We present a predictive model of the immune component of IBD that informs causal relationships among loci previously linked to IBD through genome-wide association studies (GWAS) using functional and regulatory annotations that relate to the cells, tissues, and pathophysiology of IBD. Our model consists of individual networks constructed using molecular data generated from intestinal samples isolated from three populations of patients with IBD at different stages of disease. We performed key driver analysis to identify genes predicted to modulate network regulatory states associated with IBD, prioritizing and prospectively validating 12 of the top key drivers experimentally. This validated key driver set not only introduces new regulators of processes central to IBD but also provides the integrated circuits of genetic, molecular, and clinical traits that can be directly queried to interrogate and refine the regulatory framework defining IBD.


Asunto(s)
Redes Reguladoras de Genes , Genes Reguladores , Genómica/métodos , Enfermedades Inflamatorias del Intestino/genética , Modelos Genéticos , Traslado Adoptivo , Animales , Causalidad , Células Cultivadas , Colitis/inducido químicamente , Colitis/genética , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Mucosa Intestinal/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Interferente Pequeño/genética , Subgrupos de Linfocitos T/trasplante , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA