Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gait Posture ; 90: 267-273, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34536691

RESUMEN

BACKGROUND: Individuals with unilateral transtibial amputations (ITTAs) are asymmetrical in quadriceps strength. It is unknown if this is associated with gait performance characteristics such as walking speed and limb symmetry. RESEARCH QUESTION: Are quadriceps strength asymmetries related to walking speed and/ or gait asymmetries in ITTAs? METHODS: Knee-extensor isometric maximum voluntary torque (MVT) and rate of torque development (RTD) were measured in eight ITTAs. Gait data were captured as the ITTAs walked at self-selected habitual and fast speeds. Step length and single support time, peak knee extension moments and their impulse and peak vertical ground reaction force (vGRF) in the braking and propulsive phases of stance were extracted. Bilateral Asymmetry Index (BAI) and, for gait variables only, difference in BAI between walking speeds (ΔBAI) were calculated. Correlation analyses assessed the relationships between MVT and RTD asymmetry and (1) walking speed; (2) gait asymmetries. RESULTS: Associations between strength and gait BAIs generally became more apparent at faster walking speeds, and when the difference in BAI between fast and habitual walking speed was considered. BAI RTD was strongly negatively correlated with habitual and fast walking speeds (r=∼0.83). Larger BAI RTD was strongly correlated with propulsive vGRF BAI in fast walking, and larger ΔBAIs in vGRF during both the braking and propulsion phases of gait (r = 0.74-0.92). ITTAs who exhibited greater BAI MVT showed greater ΔBAI in single support time (r = 0.83). SIGNIFICANCE: While MVT and RTD BAI appear to be associated with gait asymmetries in ITTAs, the magnitude of the asymmetry in RTD appears to be a more sensitive marker of walking speed. Based on these results, it's possible that strengthening the knee-extensors of the amputated limb to improve both MVT and RTD symmetry may benefit walking speed, and reduce asymmetrical loading in gait.


Asunto(s)
Marcha , Músculo Cuádriceps , Amputación Quirúrgica , Humanos , Torque , Caminata
2.
Clin Biomech (Bristol, Avon) ; 82: 105279, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33550002

RESUMEN

BACKGROUND: Decreased mechanical work done by the trailing limb when descending a single-step could affect load development and increase injury risk on the leading limb. This study assessed the effect of trailing limb mechanics on the development of lead limb load during a step descent by examining individuals with unilateral transtibial amputations who are known to exhibit reduced work in the prosthetic limb. METHODS: Eight amputees and 10 able-bodied controls walked 5 m along the length of a raised platform, descended a single-step of 14 cm height, and continued walking. The intact limb of amputees led during descent. Kinematic and kinetic data were recorded using integrated motion capture and force platform system. Lead limb loading was assessed through vertical ground reaction force, and knee moments and joint reaction forces. Sagittal-plane joint work was calculated for the ankle, knee, and hip in both limbs. FINDINGS: No differences were found in lead limb loading despite differences in trail limb mechanics evidenced by amputees performing 58% less total work by the trailing (prosthetic) limb to lower the centre of mass (P = 0.004) and 111% less for propulsion (P < 0.001). Amputees descended the step significantly slower (P = 0.003) and performed significantly greater lead limb ankle work (P = 0.017). After accounting for speed differences, initial loading at the knee was significantly higher in the lead limb of amputees versus controls. INTERPRETATION: Increasing lead limb work and reducing forward velocity may be effective compensatory strategies to limit lead limb loading during a step descent, in response to reduced trailing limb work.


Asunto(s)
Amputación Quirúrgica , Miembros Artificiales , Fenómenos Mecánicos , Tibia/cirugía , Caminata/fisiología , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Cinética , Masculino , Soporte de Peso
3.
Gait Posture ; 76: 327-333, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31896535

RESUMEN

BACKGROUND: When stepping down from a raised surface, either a toe or heel contact strategy is performed. Increased vertical momentum is likely to be experienced during a step descent, yet the extent to which these descent strategies influence the development of load at the ground and knee has not been examined. RESEARCH QUESTION: Does descent strategy influence ground and knee joint loading? Does the contribution from leading and trailing limb joint mechanics differ between descent strategies? METHODS: Twenty-two healthy male participants (age: 34.0 ±â€¯6.5 years, height: 179 ±â€¯6.3 cm, mass: 83.5 ±â€¯13 kg) walked along a raised platform, stepped down from a 14 cm height utilising either a toe (n = 10) or heel (n = 12) initial contact, and continued walking. Vertical ground reaction forces and knee external adduction and flexor moments were extracted for the duration of the braking phase. Joint work was calculated for the ankle, knee, and hip in both the leading and trailing limbs. RESULTS: Waveform analysis of the loading features indicated that a toe-contact strategy resulted in significantly reduced loading rates during early braking (1-32% of the braking phase) and significantly increased magnitude in late braking (55-96% of the braking phase). Individuals performing toe landings completed 33% greater overall work (p = 0.091) in the lead limb and utilised the lead limb ankle joint as the main shock absorber (79% of total lead limb work). Concurrently, the trailing limb performed 29% and 21% less work when lowering the centre of mass and propulsion, respectively, compared to a heel landing. SIGNIFICANCE: A toe-contact strategy results in reduced limb and knee joint loading rates through greater utilisation of the lead limb ankle joint. A heel-contact strategy, however, can reduce loading during late braking by utilising the functionality of the trailing limb.


Asunto(s)
Articulación del Tobillo/fisiología , Pie/fisiología , Marcha/fisiología , Articulación de la Rodilla/fisiología , Caminata/fisiología , Adulto , Fenómenos Biomecánicos , Voluntarios Sanos , Humanos , Masculino , Presión
4.
Exp Physiol ; 105(3): 408-418, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31773821

RESUMEN

NEW FINDINGS: What is the central question of this study? The effects of long-term muscle disuse on neuromuscular function are unclear because disuse studies are typically short term. In this study, we used a new model (unilateral transtibial amputees) to investigate the effects of long-term disuse on quadriceps neuromuscular function. What is the main finding and its importance? Kinetic analysis (knee-extension moments during gait) indicated habitual disuse of the amputated limb quadriceps, accompanied by lower quadriceps muscle strength (60-76%) and neural activation (32-44%), slower contractile properties and altered muscle architecture in the amputated limb, which could not be predicted from short-term disuse studies. ABSTRACT: The purpose of this study was to determine: (i) whether individuals with unilateral transtibial amputations (ITTAs), who habitually disuse the quadriceps muscles of their amputated limb, provide an effective model for assessing the effects of long-term muscle disuse; and (ii) the effects of such disuse on quadriceps muscle strength and neuromuscular function in this population. Nine ITTAs and nine control subjects performed isometric voluntary knee extensions of both limbs to assess maximal voluntary torque (MVT) and the rate of torque development (RTD). The interpolated twitch technique and EMG normalized to maximal M-wave were used to assess neural activation, involuntary (twitch and octet) contractions to assess intrinsic contractile properties, and ultrasound images of the vastus lateralis to assess muscle architecture. Clinical gait analysis was used to measure knee kinetic data during walking at an habitual speed. The ITTAs displayed 54-60% lower peak knee-extensor moments during walking in the amputated compared with intact/control limbs, but the intact and control limbs were comparable for loading during walking and muscle strength variables, suggesting that the intact limb provides a suitable internal control for comparison with the disused amputated limb. The MVT and RTD were ∼60 and ∼75% lower, respectively, in the amputated than intact/control limbs. The differences in MVT appeared to be associated with ∼40 and ∼43% lower muscle thickness and neural activation, respectively, and the differences in RTD appeared to be associated with the decline in MVT coupled with slowing of the intrinsic contractile properties. These results indicate considerable changes in strength and neuromuscular function with long-term disuse that could not be predicted from short-term disuse studies.


Asunto(s)
Músculo Cuádriceps/fisiología , Adulto , Amputados , Electromiografía/métodos , Humanos , Cinética , Rodilla/fisiología , Articulación de la Rodilla/fisiología , Masculino , Persona de Mediana Edad , Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Torque , Adulto Joven
5.
J Appl Biomech ; 36(1): 4-12, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31775122

RESUMEN

Individuals with unilateral transtibial amputations experience greater work demand and loading on the intact limb compared with the prosthetic limb, placing this limb at a greater risk of knee joint degenerative conditions. It is possible that increased loading on the intact side may occur due to strength deficits and joint absorption mechanics. This study investigated the intact limb mechanics utilized to attenuate load, independent of prosthetic limb contributions and requirements for forward progression, which could provide an indication of deficiencies in the intact limb. Amputee and healthy control participants completed 3 unilateral drop landings from a 30-cm drop height. Joint angles at touchdown; range of motion; coupling angles; peak powers; and negative work of the ankle, knee, and hip were extracted together with isometric quadriceps strength measures. No significant differences were found in the load or movement mechanics (P ≥ .31, g ≤ 0.42), despite deficits in isometric maximum (20%) and explosive (25%) strength (P ≤ .13, g ≥ 0.61) in the intact limb. These results demonstrate that, when the influence from the prosthetic limb and task demand are absent, and despite deficits in strength, the intact limb adopts joint mechanics similar to able-bodied controls to attenuate limb loading.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA