Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709683

RESUMEN

Plants respond to increased CO2 concentrations through stomatal closure, which can contribute to increased water use efficiency. Grasses display faster stomatal responses than eudicots due to dumbbell-shaped guard cells flanked by subsidiary cells working in opposition. However, forward genetic screening for stomatal CO2 signal transduction mutants in grasses has yet to be reported. The grass model Brachypodium distachyon is closely related to agronomically important cereal crops, sharing largely collinear genomes. To gain insights into CO2 control mechanisms of stomatal movements in grasses, we developed an unbiased forward genetic screen with an EMS-mutagenized Brachypodium distachyon M5 generation population using infrared imaging to identify plants with altered leaf temperatures at elevated CO2. Among isolated mutants, a "chill1" mutant exhibited cooler leaf temperatures than wildtype Bd21-3 parent control plants after exposure to increased [CO2]. chill1 plants showed strongly impaired high CO2-induced stomatal closure despite retaining a robust abscisic acid-induced stomatal closing response. Through bulked segregant whole-genome-sequencing analyses followed by analyses of further backcrossed F4 generation plants and generation and characterization of sodium-azide and CRISPR-cas9 mutants, chill1 was mapped to a protein kinase, Mitogen-Activated Protein Kinase 5 (BdMPK5). The chill1 mutation impaired BdMPK5 protein-mediated CO2/HCO3- sensing together with the High Temperature 1 (HT1) Raf-like kinase in vitro. Furthermore, AlphaFold2-directed structural modeling predicted that the identified BdMPK5-D90N chill1 mutant residue is located at the interface of BdMPK5 with the BdHT1 Raf-like kinase. BdMPK5 is a key signaling component that mediates CO2-induced stomatal movements and is proposed to function as a component of the primary CO2 sensor in grasses.

2.
PLoS Genet ; 20(3): e1011200, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470914

RESUMEN

Long terminal repeat retrotransposons (LTR-RTs) are powerful mutagens regarded as a major source of genetic novelty and important drivers of evolution. Yet, the uncontrolled and potentially selfish proliferation of LTR-RTs can lead to deleterious mutations and genome instability, with large fitness costs for their host. While population genomics data suggest that an ongoing LTR-RT mobility is common in many species, the understanding of their dual role in evolution is limited. Here, we harness the genetic diversity of 320 sequenced natural accessions of the Mediterranean grass Brachypodium distachyon to characterize how genetic and environmental factors influence plant LTR-RT dynamics in the wild. When combining a coverage-based approach to estimate global LTR-RT copy number variations with mobilome-sequencing of nine accessions exposed to eight different stresses, we find little evidence for a major role of environmental factors in LTR-RT accumulations in B. distachyon natural accessions. Instead, we show that loss of RNA polymerase IV (Pol IV), which mediates RNA-directed DNA methylation in plants, results in high transcriptional and transpositional activities of RLC_BdisC024 (HOPPLA) LTR-RT family elements, and that these effects are not stress-specific. This work supports findings indicating an ongoing mobility in B. distachyon and reveals that host RNA-directed DNA methylation rather than environmental factors controls their mobility in this wild grass model.


Asunto(s)
Brachypodium , Retroelementos , Retroelementos/genética , Genoma de Planta/genética , Brachypodium/genética , ARN Interferente Pequeño , Variaciones en el Número de Copia de ADN , Secuencias Repetidas Terminales/genética , Filogenia , Evolución Molecular
3.
Elife ; 122023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773033

RESUMEN

Deciphering the mechanism of secondary cell wall/SCW formation in plants is key to understanding their development and the molecular basis of biomass recalcitrance. Although transcriptional regulation is essential for SCW formation, little is known about the implication of post-transcriptional mechanisms in this process. Here we report that two bonafide RNA-binding proteins homologous to the animal translational regulator Musashi, MSIL2 and MSIL4, function redundantly to control SCW formation in Arabidopsis. MSIL2/4 interactomes are similar and enriched in proteins involved in mRNA binding and translational regulation. MSIL2/4 mutations alter SCW formation in the fibers, leading to a reduction in lignin deposition, and an increase of 4-O-glucuronoxylan methylation. In accordance, quantitative proteomics of stems reveal an overaccumulation of glucuronoxylan biosynthetic machinery, including GXM3, in the msil2/4 mutant stem. We showed that MSIL4 immunoprecipitates GXM mRNAs, suggesting a novel aspect of SCW regulation, linking post-transcriptional control to the regulation of SCW biosynthesis genes.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Lignina , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Procesamiento Proteico-Postraduccional , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
PLoS Genet ; 19(5): e1010706, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37163541

RESUMEN

Daylength sensing in many plants is critical for coordinating the timing of flowering with the appropriate season. Temperate climate-adapted grasses such as Brachypodium distachyon flower during the spring when days are becoming longer. The photoreceptor PHYTOCHROME C is essential for long-day (LD) flowering in B. distachyon. PHYC is required for the LD activation of a suite of genes in the photoperiod pathway including PHOTOPERIOD1 (PPD1) that, in turn, result in the activation of FLOWERING LOCUS T (FT1)/FLORIGEN, which causes flowering. Thus, B. distachyon phyC mutants are extremely delayed in flowering. Here we show that PHYC-mediated activation of PPD1 occurs via EARLY FLOWERING 3 (ELF3), a component of the evening complex in the circadian clock. The extreme delay of flowering of the phyC mutant disappears when combined with an elf3 loss-of-function mutation. Moreover, the dampened PPD1 expression in phyC mutant plants is elevated in phyC/elf3 mutant plants consistent with the rapid flowering of the double mutant. We show that loss of PPD1 function also results in reduced FT1 expression and extremely delayed flowering consistent with results from wheat and barley. Additionally, elf3 mutant plants have elevated expression levels of PPD1, and we show that overexpression of ELF3 results in delayed flowering associated with a reduction of PPD1 and FT1 expression, indicating that ELF3 represses PPD1 transcription consistent with previous studies showing that ELF3 binds to the PPD1 promoter. Indeed, PPD1 is the main target of ELF3-mediated flowering as elf3/ppd1 double mutant plants are delayed flowering. Our results indicate that ELF3 operates downstream from PHYC and acts as a repressor of PPD1 in the photoperiod flowering pathway of B. distachyon.


Asunto(s)
Brachypodium , Fitocromo , Proteínas de Plantas , Factores de Transcripción , Brachypodium/genética , Brachypodium/metabolismo , Fitocromo/metabolismo , Proteínas de Plantas/metabolismo , Fotoperiodo , Factores de Transcripción/metabolismo , Epistasis Genética , Mutación , Perfilación de la Expresión Génica , Flores/metabolismo
5.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37047802

RESUMEN

Seeds of the model grass Brachypodium distachyon are unusual because they contain very little starch and high levels of mixed-linkage glucan (MLG) accumulated in thick cell walls. It was suggested that MLG might supplement starch as a storage carbohydrate and may be mobilised during germination. In this work, we observed massive degradation of MLG during germination in both endosperm and nucellar epidermis. The enzymes responsible for the MLG degradation were identified in germinated grains and characterized using heterologous expression. By using mutants targeting MLG biosynthesis genes, we showed that the expression level of genes coding for MLG and starch-degrading enzymes was modified in the germinated grains of knocked-out cslf6 mutants depleted in MLG but with higher starch content. Our results suggest a substrate-dependent regulation of the storage sugars during germination. These overall results demonstrated the function of MLG as the main carbohydrate source during germination of Brachypodium grain. More astonishingly, cslf6 Brachypodium mutants are able to adapt their metabolism to the lack of MLG by modifying the energy source for germination and the expression of genes dedicated for its use.


Asunto(s)
Brachypodium , Glucanos , Glucanos/metabolismo , Almidón/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Germinación/genética , Endospermo/genética , Endospermo/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo
6.
Curr Biol ; 33(9): 1844-1854.e6, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37086717

RESUMEN

The leaf epidermis is the outermost cell layer forming the interface between plants and the atmosphere that must both provide a robust barrier against (a)biotic stressors and facilitate carbon dioxide uptake and leaf transpiration.1 To achieve these opposing requirements, the plant epidermis developed a wide range of specialized cell types such as stomata and hair cells. Although factors forming these individual cell types are known,2,3,4,5 it is poorly understood how their number and size are coordinated. Here, we identified a role for BdPRX76/BdPOX, a class III peroxidase, in regulating hair cell and stomatal size in the model grass Brachypodium distachyon. In bdpox mutants, prickle hair cells were smaller and stomata were longer. Because stomatal density remained unchanged, the negative correlation between stomatal size and density was disrupted in bdpox and resulted in higher stomatal conductance and lower intrinsic water-use efficiency. BdPOX was exclusively expressed in hair cells, suggesting that BdPOX cell-autonomously promotes hair cell size and indirectly restricts stomatal length. Cell-wall autofluorescence and lignin stainings indicated a role for BdPOX in the lignification or crosslinking of related phenolic compounds at the hair cell base. Ectopic expression of BdPOX in the stomatal lineage increased phenolic autofluorescence in guard cell (GC) walls and restricted stomatal elongation in bdpox. Together, we highlight a developmental interplay between hair cells and stomata that optimizes epidermal functionality. We propose that cell-type-specific changes disrupt this interplay and lead to compensatory developmental defects in other epidermal cell types.


Asunto(s)
Brachypodium , Estomas de Plantas , Estomas de Plantas/fisiología , Brachypodium/genética , Peroxidasa/metabolismo , Hojas de la Planta/fisiología , Peroxidasas/metabolismo
7.
Plant Physiol ; 188(1): 363-381, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34662405

RESUMEN

In cultivated grasses, tillering, leaf, and inflorescence architecture, as well as abscission ability, are major agronomical traits. In barley (Hordeum vulgare), maize (Zea mays), rice (Oryza sativa), and brachypodium (Brachypodium distachyon), NOOT-BOP-COCH-LIKE (NBCL) genes are essential regulators of vegetative and reproductive development. Grass species usually possess 2-4 NBCL copies and until now a single study in O. sativa showed that the disruption of all NBCL genes strongly altered O. sativa leaf development. To improve our understanding of the role of NBCL genes in grasses, we extended the study of the two NBCL paralogs BdUNICULME4 (CUL4) and BdLAXATUM-A (LAXA) in the nondomesticated grass B. distachyon. For this, we applied reversed genetics and generated original B. distachyon single and double nbcl mutants by clustered regularly interspaced short palindromic repeats - CRISPR associated protein 9 (CRISPR-Cas9) approaches and genetic crossing between nbcl targeting induced local lesions in genomes (TILLING) mutants. Through the study of original single laxa CRISPR-Cas9 null alleles, we validated functions previously proposed for LAXA in tillering, leaf patterning, inflorescence, and flower development and also unveiled roles for these genes in seed yield. Furthermore, the characterization of cul4laxa double mutants revealed essential functions for nbcl genes in B. distachyon development, especially in the regulation of tillering, stem cell elongation and secondary cell wall composition as well as for the transition toward the reproductive phase. Our results also highlight recurrent antagonist interactions between NBCLs occurring in multiple aspects of B. distachyon development.


Asunto(s)
Brachypodium/crecimiento & desarrollo , Brachypodium/genética , Inflorescencia/crecimiento & desarrollo , Inflorescencia/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Secuencia Conservada , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Mutación , Genética Inversa
8.
Plant J ; 109(6): 1559-1574, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34953105

RESUMEN

KARRIKIN INSENSITIVE2 (KAI2) is an α/ß-hydrolase required for plant responses to karrikins, which are abiotic butenolides that can influence seed germination and seedling growth. Although represented by four angiosperm species, loss-of-function kai2 mutants are phenotypically inconsistent and incompletely characterised, resulting in uncertainties about the core functions of KAI2 in plant development. Here we characterised the developmental functions of KAI2 in the grass Brachypodium distachyon using molecular, physiological and biochemical approaches. Bdkai2 mutants exhibit increased internode elongation and reduced leaf chlorophyll levels, but only a modest increase in water loss from detached leaves. Bdkai2 shows increased numbers of lateral roots and reduced root hair growth, and fails to support normal root colonisation by arbuscular-mycorrhizal (AM) fungi. The karrikins KAR1 and KAR2 , and the strigolactone (SL) analogue rac-GR24, each elicit overlapping but distinct changes to the shoot transcriptome via BdKAI2. Finally, we show that BdKAI2 exhibits a clear ligand preference for desmethyl butenolides and weak responses to methyl-substituted SL analogues such as GR24. Our findings suggest that KAI2 has multiple roles in shoot development, root system development and transcriptional regulation in grasses. Although KAI2-dependent AM symbiosis is likely conserved within monocots, the magnitude of the effect of KAI2 on water relations may vary across angiosperms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Proteínas de Arabidopsis/fisiología , Brachypodium/genética , Furanos , Lactonas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/genética , Piranos , Simbiosis
9.
Plant Physiol ; 187(3): 1374-1386, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618081

RESUMEN

The enzymatic hydrolysis of cellulose into glucose, referred to as saccharification, is severely hampered by lignins. Here, we analyzed transgenic poplars (Populus tremula × Populus alba) expressing the Brachypodium (Brachypodium distachyon) p-coumaroyl-Coenzyme A monolignol transferase 1 (BdPMT1) gene driven by the Arabidopsis (Arabidopsis thaliana) Cinnamate 4-Hydroxylase (AtC4H) promoter in the wild-type (WT) line and in a line overexpressing the Arabidopsis Ferulate 5-Hydroxylase (AtF5H). BdPMT1 encodes a transferase which catalyzes the acylation of monolignols by p-coumaric acid (pCA). Several BdPMT1-OE/WT and BdPMT1-OE/AtF5H-OE lines were grown in the greenhouse, and BdPMT1 expression in xylem was confirmed by RT-PCR. Analyses of poplar stem cell walls (CWs) and of the corresponding purified dioxan lignins (DLs) revealed that BdPMT1-OE lignins were as p-coumaroylated as lignins from C3 grass straws. For some transformants, pCA levels reached 11 mg·g-1 CW and 66 mg·g-1 DL, exceeding levels in Brachypodium or wheat (Triticum aestivum) samples. This unprecedentedly high lignin p-coumaroylation affected neither poplar growth nor stem lignin content. Interestingly, p-coumaroylation of poplar lignins was not favored in BdPMT1-OE/AtF5H-OE transgenic lines despite their high frequency of syringyl units. However, lignins of all BdPMT1-OE lines were structurally modified, with an increase of terminal unit with free phenolic groups. Relative to controls, this increase argues for a reduced polymerization degree of BdPMT1-OE lignins and makes them more soluble in cold NaOH solution. The p-coumaroylation of poplar samples improved the saccharification yield of alkali-pretreated CW, demonstrating that the genetically driven p-coumaroylation of lignins is a promising strategy to make wood lignins more susceptible to alkaline treatments used during the industrial processing of lignocellulosics.


Asunto(s)
Ácidos Cumáricos/química , Lignina/análisis , Populus/metabolismo , Madera/metabolismo , Lignina/química , Populus/química
10.
BMC Plant Biol ; 21(1): 196, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33892630

RESUMEN

BACKGROUND: The vascular system of plants consists of two main tissue types, xylem and phloem. These tissues are organized into vascular bundles that are arranged into a complex network running through the plant that is essential for the viability of land plants. Despite their obvious importance, the genes involved in the organization of vascular tissues remain poorly understood in grasses. RESULTS: We studied in detail the vascular network in stems from the model grass Brachypodium distachyon (Brachypodium) and identified a large set of genes differentially expressed in vascular bundles versus parenchyma tissues. To decipher the underlying molecular mechanisms of vascularization in grasses, we conducted a forward genetic screen for abnormal vasculature. We identified a mutation that severely affected the organization of vascular tissues. This mutant displayed defects in anastomosis of the vascular network and uncommon amphivasal vascular bundles. The causal mutation is a premature stop codon in ERECTA, a LRR receptor-like serine/threonine-protein kinase. Mutations in this gene are pleiotropic indicating that it serves multiple roles during plant development. This mutant also displayed changes in cell wall composition, gene expression and hormone homeostasis. CONCLUSION: In summary, ERECTA has a pleiotropic role in Brachypodium. We propose a major role of ERECTA in vasculature anastomosis and vascular tissue organization in Brachypodium.


Asunto(s)
Brachypodium/genética , Floema/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Xilema/crecimiento & desarrollo , Brachypodium/crecimiento & desarrollo , Brachypodium/metabolismo , Floema/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Superficie Celular/metabolismo , Xilema/genética
11.
Plant Direct ; 4(9): e00265, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33005856

RESUMEN

Lignin is a key secondary cell wall chemical constituent, and is both a barrier to biomass utilization and a potential source of bioproducts. The Arabidopsis transcription factors MYB58 and MYB63 have been shown to upregulate gene expression of the general phenylpropanoid and monolignol biosynthetic pathways. The overexpression of these genes also results in dwarfism. The vascular integrity, soluble phenolic profiles, cell wall lignin, and transcriptomes associated with these MYB-overexpressing lines were characterized. Plants with high expression of MYB58 and MYB63 had increased ectopic lignin and the xylem vessels were regular and open, suggesting that the stunted growth is not associated with loss of vascular conductivity. MYB58 and MYB63 overexpression lines had characteristic soluble phenolic profiles with large amounts of monolignol glucosides and sinapoyl esters, but decreased flavonoids. Because loss of function lac4 lac17 mutants also accumulate monolignol glucosides, we hypothesized that LACCASE overexpression might decrease monolignol glucoside levels in the MYB-overexpressing plant lines. When laccases related to lignification (LAC4 or LAC17) were co-overexpressed with MYB63 or MYB58, the dwarf phenotype was rescued. Moreover, the overexpression of either LAC4 or LAC17 led to wild-type monolignol glucoside levels, as well as wild-type lignin levels in the rescued plants. Transcriptomes of the rescued double MYB63-OX/LAC17-OX overexpression lines showed elevated, but attenuated, expression of the MYB63 gene itself and the direct transcriptional targets of MYB63. Contrasting the dwarfism from overabundant monolignol production with dwarfism from lignin mutants provides insight into some of the proposed mechanisms of lignin modification-induced dwarfism.

12.
Nat Commun ; 11(1): 5138, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046693

RESUMEN

Grasses have varying inflorescence shapes; however, little is known about the genetic mechanisms specifying such shapes among tribes. Here, we identify the grass-specific TCP transcription factor COMPOSITUM 1 (COM1) expressing in inflorescence meristematic boundaries of different grasses. COM1 specifies branch-inhibition in barley (Triticeae) versus branch-formation in non-Triticeae grasses. Analyses of cell size, cell walls and transcripts reveal barley COM1 regulates cell growth, thereby affecting cell wall properties and signaling specifically in meristematic boundaries to establish identity of adjacent meristems. COM1 acts upstream of the boundary gene Liguleless1 and confers meristem identity partially independent of the COM2 pathway. Furthermore, COM1 is subject to purifying natural selection, thereby contributing to specification of the spike inflorescence shape. This meristem identity pathway has conceptual implications for both inflorescence evolution and molecular breeding in Triticeae.


Asunto(s)
Hordeum/metabolismo , Inflorescencia/crecimiento & desarrollo , Meristema/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Hordeum/crecimiento & desarrollo , Inflorescencia/genética , Inflorescencia/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Proteínas de Plantas/genética , Transducción de Señal
13.
Methods Mol Biol ; 2166: 387-411, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32710422

RESUMEN

Cells have sophisticated RNA-directed mechanisms to regulate genes, destroy viruses, or silence transposable elements (TEs). In terrestrial plants, a specialized non-coding RNA machinery involving RNA polymerase IV (Pol IV) and small interfering RNAs (siRNAs) targets DNA methylation and silencing to TEs. Here, we present a bioinformatics protocol for annotating and quantifying siRNAs that derive from long terminal repeat (LTR) retrotransposons. The approach was validated using small RNA northern blot analyses, comparing the species Arabidopsis thaliana and Brachypodium distachyon. To assist hybridization probe design, we configured a genome browser to show small RNA-seq mappings in distinct colors and shades according to their nucleotide lengths and abundances, respectively. Samples from wild-type and pol IV mutant plants, cross-species negative controls, and a conserved microRNA control validated the detected siRNA signals, confirming their origin from specific TEs and their Pol IV-dependent biogenesis. Moreover, an optimized labeling method yielded probes that could detect low-abundance siRNAs from B. distachyon TEs. The integration of de novo TE annotation, small RNA-seq profiling, and northern blotting, as outlined here, will facilitate the comparative genomic analysis of RNA silencing in crop plants and non-model species.


Asunto(s)
Arabidopsis/genética , Northern Blotting/métodos , Brachypodium/genética , Genoma de Planta , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Retroelementos/genética , Proteínas de Arabidopsis/genética , ARN Polimerasas Dirigidas por ADN/genética , Plantas Modificadas Genéticamente , Interferencia de ARN , ARN Bicatenario/genética , RNA-Seq , Secuencias Repetidas Terminales/genética
14.
New Phytol ; 227(6): 1649-1667, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32285456

RESUMEN

A key aspect of plant growth is the synthesis and deposition of cell walls. In specific tissues and cell types including xylem and fibre, a thick secondary wall comprised of cellulose, hemicellulose and lignin is deposited. Secondary cell walls provide a physical barrier that protects plants from pathogens, promotes tolerance to abiotic stresses and fortifies cells to withstand the forces associated with water transport and the physical weight of plant structures. Grasses have numerous cell wall features that are distinct from eudicots and other plants. Study of the model species Brachypodium distachyon as well as other grasses has revealed numerous features of the grass cell wall. These include the characterisation of xylosyl and arabinosyltransferases, a mixed-linkage glucan synthase and hydroxycinnamate acyltransferases. Perhaps the most fertile area for discovery has been the formation of lignins, including the identification of novel substrates and enzyme activities towards the synthesis of monolignols. Other enzymes function as polymerising agents or transferases that modify lignins and facilitate interactions with polysaccharides. The regulatory aspects of cell wall biosynthesis are largely overlapping with those of eudicots, but salient differences among species have been resolved that begin to identify the determinants that define grass cell walls.


Asunto(s)
Brachypodium , Pared Celular , Celulosa , Lignina
15.
Plant J ; 103(2): 645-659, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32343459

RESUMEN

In cultivated grasses, tillering, spike architecture and seed shattering represent major agronomical traits. In barley, maize and rice, the NOOT-BOP-COCH-LIKE (NBCL) genes play important roles in development, especially in ligule development, tillering and flower identity. However, compared with dicots, the role of grass NBCL genes is underinvestigated. To better understand the role of grass NBCLs and to overcome any effects of domestication that might conceal their original functions, we studied TILLING nbcl mutants in the non-domesticated grass Brachypodium distachyon. In B. distachyon, the NBCL genes BdUNICULME4 (CUL4) and BdLAXATUM-A (LAXA) are orthologous, respectively, to the barley HvUniculme4 and HvLaxatum-a, to the maize Zmtassels replace upper ears1 and Zmtassels replace upper ears2 and to the rice OsBLADE-ON-PETIOLE1 and OsBLADE-ON-PETIOLE2/3. In B. distachyon, our reverse genetics study shows that CUL4 is not essential for the establishment of the blade-sheath boundary but is necessary for the development of the ligule and auricles. We report that CUL4 also exerts a positive role in tillering and a negative role in spikelet meristem activity. On the other hand, we demonstrate that LAXA plays a negative role in tillering, positively participates in spikelet development and contributes to the control of floral organ number and identity. In this work, we functionally characterized two new NBCL genes in a context of non-domesticated grass and highlighted original roles for grass NBCL genes that are related to important agronomical traits.


Asunto(s)
Brachypodium/metabolismo , Proteínas de Plantas/metabolismo , Brachypodium/genética , Brachypodium/crecimiento & desarrollo , Secuencia Conservada/genética , Genes de Plantas/genética , Genes de Plantas/fisiología , Inflorescencia/crecimiento & desarrollo , Inflorescencia/metabolismo , Mutación , Filogenia , Proteínas de Plantas/genética , Genética Inversa , Transcriptoma
16.
New Phytol ; 227(6): 1725-1735, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32173866

RESUMEN

The timing of reproduction is a critical developmental decision in the life cycle of many plant species. Fine mapping of a rapid-flowering mutant was done using whole-genome sequence data from bulked DNA from a segregating F2 mapping populations. The causative mutation maps to a gene orthologous with the third subunit of DNA polymerase δ (POLD3), a previously uncharacterized gene in plants. Expression analyses of POLD3 were conducted via real time qPCR to determine when and in what tissues the gene is expressed. To better understand the molecular basis of the rapid-flowering phenotype, transcriptomic analyses were conducted in the mutant vs wild-type. Consistent with the rapid-flowering mutant phenotype, a range of genes involved in floral induction and flower development are upregulated in the mutant. Our results provide the first characterization of the developmental and gene expression phenotypes that result from a lesion in POLD3 in plants.


Asunto(s)
Brachypodium , Brachypodium/genética , Brachypodium/metabolismo , ADN Polimerasa III , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reproducción
17.
Biotechnol Biofuels ; 12: 181, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31338123

RESUMEN

BACKGROUND: Dedicated lignocellulosic feedstock from grass crops for biofuel production is extensively increasing. However, the access to fermentable cell wall sugars by carbohydrate degrading enzymes is impeded by lignins. These complex polymers are made from reactive oxidized monolignols in the cell wall. Little is known about the laccase-mediated oxidation of monolignols in grasses, and inactivation of the monolignol polymerization mechanism might be a strategy to increase the yield of fermentable sugars. RESULTS: LACCASE5 and LACCASE8 are inactivated in a Brachypodium double mutant. Relative to the wild type, the lignin content of extract-free mature culms is decreased by 20-30% and the saccharification yield is increased by 140%. Release of ferulic acid by mild alkaline hydrolysis is also 2.5-fold higher. Interfascicular fibers are mainly affected while integrity of vascular bundles is not impaired. Interestingly, there is no drastic impact of the double mutation on plant growth. CONCLUSION: This work shows that two Brachypodium laccases with clearly identified orthologs in crops are involved in lignification of this model plant. Lignification in interfascicular fibers and metaxylem cells is partly uncoupled in Brachypodium. Orthologs of these laccases are promising targets for improving grass feedstock for cellulosic biofuel production.

18.
J Exp Bot ; 69(8): 1849-1859, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29481639

RESUMEN

Lignin is an important phenolic biopolymer that provides strength and rigidity to the secondary cell walls of tracheary elements, sclereids, and fibers in vascular plants. Lignin precursors, called monolignols, are synthesized in the cell and exported to the cell wall where they are polymerized into lignin by oxidative enzymes such as laccases and peroxidases. In Arabidopsis thaliana, a peroxidase (PRX64) and laccase (LAC4) are shown to localize differently within cell wall domains in interfascicular fibers: PRX64 localizes to the middle lamella whereas LAC4 localizes throughout the secondary cell wall layers. Similarly, laccases localized to, and are responsible for, the helical depositions of lignin in protoxylem tracheary elements. In addition, we tested the mobility of laccases in the cell wall using fluorescence recovery after photobleaching. mCHERRY-tagged LAC4 was immobile in secondary cell wall domains, but mobile in the primary cell wall when ectopically expressed. A small secreted red fluorescent protein (sec-mCHERRY) was engineered as a control and was found to be mobile in both the primary and secondary cell walls. Unlike sec-mCHERRY, the tight anchoring of LAC4 to secondary cell wall domains indicated that it cannot be remobilized once secreted, and this anchoring underlies the spatial control of lignification.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Pared Celular/metabolismo , Lacasa/metabolismo , Lignina/metabolismo , Peroxidasas/metabolismo , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Pared Celular/química , Pared Celular/genética , Regulación de la Expresión Génica de las Plantas , Lacasa/química , Lacasa/genética , Peroxidasas/química , Peroxidasas/genética , Dominios Proteicos , Transporte de Proteínas
19.
PLoS One ; 12(9): e0184820, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28961242

RESUMEN

In the plant cell wall, boron links two pectic domain rhamnogalacturonan II (RG-II) chains together to form a dimer and thus contributes to the reinforcement of cell adhesion. We studied the mur1-1 mutant of Arabidopsis thaliana which has lost the ability to form GDP-fucose in the shoots and show that the extent of RG-II cross-linking is reduced in the lignified stem of this mutant. Surprisingly, MUR1 mutation induced an enrichment of resistant interunit bonds in lignin and triggered the overexpression of many genes involved in lignified tissue formation and in jasmonic acid signaling. The defect in GDP-fucose synthesis induced a loss of cell adhesion at the interface between stele and cortex, as well as between interfascicular fibers. This led to the formation of regenerative xylem, where tissue detachment occurred, and underlined a loss of resistance to mechanical forces. Similar observations were also made on bor1-3 mutant stems which are altered in boron xylem loading, leading us to suggest that diminished RG-II dimerization is responsible for regenerative xylem formation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Guanosina Difosfato Fucosa/metabolismo , Lignina/metabolismo , Mutación , Pectinas/metabolismo , Arabidopsis/genética , Pectinas/química
20.
New Phytol ; 215(3): 1009-1025, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28617955

RESUMEN

While Brachypodium distachyon (Brachypodium) is an emerging model for grasses, no expression atlas or gene coexpression network is available. Such tools are of high importance to provide insights into the function of Brachypodium genes. We present a detailed Brachypodium expression atlas, capturing gene expression in its major organs at different developmental stages. The data were integrated into a large-scale coexpression database ( www.gene2function.de), enabling identification of duplicated pathways and conserved processes across 10 plant species, thus allowing genome-wide inference of gene function. We highlight the importance of the atlas and the platform through the identification of duplicated cell wall modules, and show that a lignin biosynthesis module is conserved across angiosperms. We identified and functionally characterised a putative ferulate 5-hydroxylase gene through overexpression of it in Brachypodium, which resulted in an increase in lignin syringyl units and reduced lignin content of mature stems, and led to improved saccharification of the stem biomass. Our Brachypodium expression atlas thus provides a powerful resource to reveal functionally related genes, which may advance our understanding of important biological processes in grasses.


Asunto(s)
Brachypodium/citología , Brachypodium/genética , Pared Celular/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Lignina/metabolismo , Arabidopsis/genética , Bases de Datos Genéticas , Oryza/genética , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...