Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38052450

RESUMEN

Interest in fermented foods is increasing because fermented foods are promising solutions for more secure food systems with an increased proportion of minimally processed plant foods and a smaller environmental footprint. These developments also pertain to novel fermented food for which no traditional template exists, raising the question of how to develop starter cultures for such fermentations. This review establishes a framework that integrates traditional and scientific knowledge systems for the selection of suitable cultures. Safety considerations, the use of organisms in traditional food fermentations, and the link of phylogeny to metabolic properties provide criteria for culture selection. Such approaches can also select for microbial strains that have health benefits. A science-based approach to the development of novel fermented foods can substantially advance their value through more secure food systems, food products that provide health-promoting microbes, and the provision of foods that improve human health. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 15 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2.
Foods ; 12(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37628130

RESUMEN

The responses of various microbial populations to modifications in the physicochemical properties of a food matrix, as well as interactions between these populations already present, are the main factors that shape microbial dynamics in that matrix. This work focused on the study of microbial dynamics during labneh Ambaris production, a traditional Lebanese concentrated fermented goat milk made in jars during 3 months. This was assessed in two earthenware jars at a production facility. DNA metabarcoding of the ITS2 region as well as the V3-V4 region of the 16S rRNA gene was used to characterize the fungal and bacterial communities, respectively. Viable bacterial isolates were also identified by Sanger sequencing of the V1-V4 region of the 16S rRNA gene. Our results showed that the dominant microorganisms identified within labneh Ambaris (Lactobacillus kefiranofaciens, Lentilactobacillus kefiri, Lactococcus lactis, Geotrichum candidum, Pichia kudriavzevii and Starmerella sp.) settle early in the product and remain until the end of maturation with varying abundances throughout fermentation. Microbial counts increased during early fermentation stage, and remained stable during mid-fermentation, then declined during maturation. While microbial compositions were globally comparable between the two jars during mid-fermentation and maturation stages, differences between the two jars were mainly detected during early fermentation stage (D0 until D10). No significant sensorial differences were observed between the final products made in the two jars. Neither coliforms nor Enterobacteriaceae were detected in their viable state, starting D7 in both jars, suggesting the antimicrobial properties of the product.

3.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36850434

RESUMEN

The mechanical properties of biological tissues influence their function and can predict degenerative conditions before gross histological or physiological changes are detectable. This is especially true for structural tissues such as articular cartilage, which has a primarily mechanical function that declines after injury and in the early stages of osteoarthritis. While atomic force microscopy (AFM) has been used to test the elastic modulus of articular cartilage before, there is no agreement or consistency in methodologies reported. For murine articular cartilage, methods differ in two major ways: experimental parameter selection and sample preparation. Experimental parameters that affect AFM results include indentation force and cantilever stiffness; these are dependent on the tip, sample, and instrument used. The aim of this project was to optimize these experimental parameters to measure murine articular cartilage elastic modulus by AFM micro-indentation. We first investigated the effects of experimental parameters on a control material, polydimethylsiloxane gel (PDMS), which has an elastic modulus on the same order of magnitude as articular cartilage. Experimental parameters were narrowed on this control material, and then finalized on wildtype C57BL/6J murine articular cartilage samples that were prepared with a novel technique that allows for cryosectioning of epiphyseal segments of articular cartilage and long bones without decalcification. This technique facilitates precise localization of AFM measurements on the murine articular cartilage matrix and eliminates the need to separate cartilage from underlying bone tissues, which can be challenging in murine bones because of their small size. Together, the new sample preparation method and optimized experimental parameters provide a reliable standard operating procedure to measure microscale variations in the elastic modulus of murine articular cartilage.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Ratones , Módulo de Elasticidad , Microscopía de Fuerza Atómica , Huesos
4.
J Dairy Sci ; 106(2): 868-883, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36543637

RESUMEN

Labneh Ambaris is a traditional Lebanese dairy product typically made using goat milk in special earthenware jars. Its production is characterized by the regular additions of milk and coarse salt, all while draining the whey throughout a process that lasts for a minimum of 2 mo. In this study, 20 samples of labneh Ambaris, all produced by spontaneous fermentation, were studied. They were collected at the end of fermentation from different regions in Lebanon. Physicochemical and sensory properties were studied and microbial diversity was analyzed using culture-dependent and independent techniques. The V3-V4 region of the 16S rRNA gene and the ITS2 region were sequenced by DNA metabarcoding analyses for the identification of bacteria and yeast communities, respectively. Out of 160 bacterial and 36 fungal taxa, 117 different bacterial species and 24 fungal species were identified among all labneh Ambaris samples studied. The remaining ones were multi-affiliated and could not be identified at the species level. Lactobacillus was the dominant bacterial genus, followed by Lentilactobacillus, Lactiplantibacillus, Lacticaseibacillus, and Lactococcus genera, whereas Geotrichum and Pichia were the dominant fungal genera. The 20 samples tested had varying levels of salt, protein, and fat contents, but they were all highly acidic (mostly having a pH < 4). According to the sensory scores generated by classical descriptive analysis, all samples were described as having basic similar characteristics such as goat smell and flavor, but they could be differentiated based on various intensities within the same descriptors like salty and acidic. This work could be considered as a base toward obtaining a quality label for labneh Ambaris.


Asunto(s)
Microbiota , Leche , Animales , Leche/química , ARN Ribosómico 16S/genética , Bacterias , Cabras/genética , Fermentación
5.
Mol Ecol ; 32(10): 2413-2427, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35892285

RESUMEN

Understanding microbial dispersal is critical to understand the dynamics and evolution of microbial communities. However, microbial dispersal is difficult to study because of uncertainty about their vectors of migration. This applies to both microbial communities in natural and human-associated environments. Here, we studied microbial dispersal along the sourdoughs bread-making chain using a participatory research approach. Sourdough is a naturally fermented mixture of flour and water. It hosts a community of bacteria and yeasts whose origins are only partially known. We analysed the potential of wheat grains and flour to serve as an inoculum for sourdough microbial communities using 16S rDNA and ITS1 metabarcoding. First, in an experiment involving farmers, a miller and bakers, we followed the microbiota from grains to newly initiated and propagated sourdoughs. Second, we compared the microbiota of 46 sourdough samples collected everywhere in France, and of the flour used for their back-slopping. The core microbiota detected on the seeds, in the flour and in the sourdough was composed mainly of microbes known to be associated with plants and not living in sourdoughs. No sourdough yeast species were detected on grains and flours. Sourdough lactic acid bacteria were rarely found in flour. When they were, they did not have the same amplicon sequence variant (ASV) as found in the corresponding sourdough. However, the low sequencing depth for bacteria in flour did not allow us to draw definitive conclusion. Thus, our results showed that sourdough yeasts did not come from flour, and suggest that neither do sourdough LAB.


Asunto(s)
Microbiota , Triticum , Humanos , Triticum/microbiología , Investigación Participativa Basada en la Comunidad , Fermentación , Microbiología de Alimentos , Microbiota/genética , Bacterias/genética , Levaduras/genética , Pan/análisis , Pan/microbiología
6.
J Invest Dermatol ; 143(2): 284-293, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36116512

RESUMEN

Systemic sclerosis (SSc) is a clinically heterogeneous fibrotic disease with no effective treatment. Myofibroblasts are responsible for unresolving synchronous skin and internal organ fibrosis in SSc, but the drivers of sustained myofibroblast activation remain poorly understood. Using unbiased transcriptome analysis of skin biopsies, we identified the downregulation of SPAG17 in multiple independent cohorts of patients with SSc, and by orthogonal approaches, we observed a significant negative correlation between SPAG17 and fibrotic gene expression. Fibroblasts and endothelial cells explanted from SSc skin biopsies showed reduced chromatin accessibility at the SPAG17 locus. Remarkably, mice lacking Spag17 showed spontaneous skin fibrosis with increased dermal thickness, collagen deposition and stiffness, and altered collagen fiber alignment. Knockdown of SPAG17 in human and mouse fibroblasts and microvascular endothelial cells was accompanied by spontaneous myofibroblast transformation and markedly heightened sensitivity to profibrotic stimuli. These responses were accompanied by constitutive TGF-ß pathway activation. Thus, we discovered impaired expression of SPAG17 in SSc and identified, to our knowledge, a previously unreported cell-intrinsic role for SPAG17 in the negative regulation of fibrotic responses. These findings shed fresh light on the pathogenesis of SSc and may inform the search for innovative therapies for SSc and other fibrotic conditions through SPAG17 signaling.


Asunto(s)
Miofibroblastos , Esclerodermia Sistémica , Animales , Humanos , Ratones , Células Cultivadas , Colágeno/metabolismo , Células Endoteliales/metabolismo , Fibroblastos/metabolismo , Fibrosis , Proteínas de Microtúbulos/metabolismo , Miofibroblastos/patología , Esclerodermia Sistémica/patología , Piel/patología
7.
Foods ; 11(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496682

RESUMEN

Labneh Ambaris is a traditional Lebanese dairy product traditionally made using raw goat's milk in earthenware jars, but recently the use of artisanally pasteurized milk was introduced for safety reasons. In this study, 12 samples of labneh Ambaris were studied, six made using raw goat's milk and six others using artisanally pasteurized goat's milk. These samples were collected during fermentation and their microbial compositions were analyzed. The 16S V3-V4 and the ITS2 regions of the rDNA were sequenced by DNA metabarcoding analyses for the identification and comparison of bacterial and fungal communities, respectively. The samples had high microbial diversity but differences in samples microbiota were unrelated to whether or not milk was pasteurized. The samples were consequently clustered on the basis of their dominant bacterial or fungal species, regardless of the milk used. Concerning bacterial communities, samples were clustered into 3 groups, one with a higher abundance of Lactobacillus helveticus, another with Lactobacillus kefiranofaciens as the dominant bacterial species, and the third with Lentilactobacillus sp. as the most abundant species. Species belonging to the Enterobacteriaceae family were detected in higher abundance in all raw milk samples than in artisanally pasteurized milk samples. As for fungal communities, the samples were clustered into two groups, one dominated by Geotrichum candidum and the other by Pichia kudriavzevii.

8.
Microorganisms ; 10(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35889135

RESUMEN

Leavened bread can be made with different wheat varieties and leavening agents. Several studies have now demonstrated that each of these factors can play a role in bread quality. However, their relative impact in artisanal bread making remains to be elucidated. Here, we assessed the impact of two wheat varieties as well as the impact of sourdoughs and yeasts on multiple components of bread organoleptic and nutritional quality. Using a participatory research approach including scientists and bakers, we compared breads leavened with three different sourdoughs and three different commercial yeasts as well as a mix of sourdough and yeast. Breads were made from two wheat varieties commonly used in organic farming: the variety "Renan" and the landrace "Barbu". Except for bread minerals contents that mostly depended on wheat variety, bread quality was mostly driven by the fermenting agent. Sourdough breads had lower sugar and organic acids contents. These differences were mostly attributable to lower amounts of maltose and malate. They also had a higher proportion of soluble proteins than yeast breads, with specific aroma profiles. Finally, their aroma profiles were specific and more diverse compared to yeast breads. Interestingly, we also found significant nutritional and organoleptic quality differences between sourdough breads. These results highlight the value of sourdough bread and the role of sourdough microbial diversity in bread nutritional and organoleptic quality.

9.
Trends Microbiol ; 30(10): 1012-1013, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35659741
10.
Genome Biol Evol ; 14(2)2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35106561

RESUMEN

Recent studies have suggested that species of the Kazachstania genus may be interesting models of yeast domestication. Among these, Kazachstania barnettii has been isolated from various microbially transformed foodstuffs such as sourdough bread and kefir. In the present work, we sequence, assemble, and annotate the complete genomes of two K. barnettii strains: CLIB 433, being one of the two reference strains for K. barnettii that was isolated as a spoilage organism in soft drink, and CLIB 1767, recently isolated from artisan bread-making sourdough. Both assemblies are of high quality with N50 statistics greater than 1.3 Mb and BUSCO score greater than 99%. An extensive comparison of the two obtained genomes revealed very few differences between the two K. barnettii strains, considering both genome structure and gene content. The proposed genome assemblies will constitute valuable references for future comparative genomic, population genomic, or transcriptomic studies of the K. barnettii species.


Asunto(s)
Saccharomycetales , Pan , Fermentación , Saccharomycetales/genética , Levaduras
11.
Am J Physiol Gastrointest Liver Physiol ; 322(2): G234-G246, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34941452

RESUMEN

The fibrogenic wound-healing response in liver increases stiffness. Stiffness mechanotransduction, in turn, amplifies fibrogenesis. Here, we aimed to understand the distribution of stiffness in fibrotic liver, how it impacts hepatic stellate cell (HSC) heterogeneity, and identify mechanisms by which stiffness amplifies fibrogenic responses. Magnetic resonance elastography and atomic force microscopy demonstrated a heterogeneous distribution of liver stiffness at macroscopic and microscopic levels, respectively, in a carbon tetrachloride (CCl4) mouse model of liver fibrosis as compared with controls. High stiffness was mainly attributed to extracellular matrix dense areas. To identify a stiffness-sensitive HSC subpopulation, we performed single-cell RNA sequencing (scRNA-seq) on primary HSCs derived from healthy versus CCl4-treated mice. A subcluster of HSCs was matrix-associated with the most upregulated pathway in this subpopulation being focal adhesion signaling, including a specific protein termed four and a half LIM domains protein 2 (FHL2). In vitro, FHL2 expression was increased in primary human HSCs cultured on stiff matrix as compared with HSCs on soft matrix. Moreover, FHL2 knockdown inhibited fibronectin and collagen 1 expression, whereas its overexpression promoted matrix production. In summary, we demonstrate stiffness heterogeneity at the whole organ, lobular, and cellular level, which drives an amplification loop of fibrogenesis through specific focal adhesion molecular pathways.NEW & NOTEWORTHY The fibrogenic wound-healing response in liver increases stiffness. Here, macro and microheterogeneity of liver stiffness correlate with HSC heterogeneity in a hepatic fibrosis mouse model. Fibrogenic HSCs localized in stiff collagen-high areas upregulate the expression of focal adhesion molecule FHL2, which, in turn, promotes extracellular matrix protein expression. These results demonstrate that stiffness heterogeneity at the whole organ, lobular, and cellular level drives an amplification loop of fibrogenesis through specific focal adhesion molecular pathways.


Asunto(s)
Células Estrelladas Hepáticas/metabolismo , Macrófagos del Hígado/metabolismo , Cirrosis Hepática/metabolismo , Hígado/metabolismo , Animales , Tetracloruro de Carbono/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Mecanotransducción Celular/fisiología , Ratones
12.
Food Sci Nutr ; 9(5): 2446-2457, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34026062

RESUMEN

The health-promoting effects of whole-grain consumption have been attributed in a large part to the phytochemical profile of the wheat grain, and particularly to the bioactive molecules present in bran. This study shed light on the impact of human practices, especially harvesting sites (terroirs) and wheat species and varieties, as well as bread-making conditions on the variation of the antioxidant and antimicrobial ferulic acid (FA) content. FA concentration in the bran of wheat species (durum and bread wheat) and varieties (Chevalier, Renan, Redon, Saint Priest le vernois rouge, Bladette de Provence, Pireneo, Rouge de Bordeaux, LA1823, Claudio et Bidi17) harvested in five sites in France on 2015 and 2017, has been evaluated. Statistical analysis showed significant differences in FA content for wheat varieties and terroirs. During bread making, baking and type of leaven impacted the FA content of dough and bread. The differences were not due to the type of fermentation (sourdough/commercial yeast) but rather to the diversity of fermenting microbial strains and flour used for backslopping.

13.
Food Microbiol ; 98: 103790, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33875218

RESUMEN

The metabolism of ferulic acid (FA) was studied during fermentation with different species and strains of lactic acid bacteria (LAB) and yeasts, in synthetic sourdough medium. Yeast strains of Kazachstania humilis, Kazachstania bulderi, and Saccharomyces cerevisiae, as well as lactic acid bacteria strains of Fructilactobacillus sanfranciscensis, Lactiplantibacillus plantarum, Lactiplantibacillus xiangfangensis, Levilactobacillus hammesii, Latilactobacillus curvatus and Latilactobacillus sakei were selected from French natural sourdoughs. Fermentation in presence or absence of FA was carried out in LAB and yeasts monocultures, as well as in LAB/yeast co-cultures. Our results indicated that FA was mainly metabolized into 4-vinylguaiacol (4-VG) by S. cerevisiae strains, and into dihydroferulic acid (DHFA) and 4-VG in the case of LAB. Interactions of LAB and yeasts led to the modification of FA metabolism, with a major formation of DHFA, even by the strains that do not produce it in monoculture. Interestingly, FA was almost completely consumed by the F. sanfranciscensis bFs17 and K. humilis yKh17 pair and converted into DHFA in 89.5 ± 19.6% yield, while neither bFs17, nor yKh17 strains assimilated FA in monoculture.


Asunto(s)
Pan/análisis , Ácidos Cumáricos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Triticum/microbiología , Pan/microbiología , Ácidos Cumáricos/análisis , Fermentación , Harina/análisis , Harina/microbiología , Microbiología de Alimentos , Saccharomycetales/química , Triticum/metabolismo
14.
Curr Biol ; 31(4): 722-732.e5, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33301710

RESUMEN

Production of leavened bread dates to the second millennium BCE. Since then, the art of bread making has developed, yet the evolution of bread-associated microbial species remains largely unknown. Nowadays, leavened bread is made either by using a pure commercial culture of the yeast Saccharomyces cerevisiae or by propagating a sourdough-a mix of flour and water spontaneously fermented by yeasts and bacteria. We studied the domestication of S. cerevisiae originating from industrial sources and artisanal sourdoughs and tested whether different bread-making processes led to population divergence. We found that S. cerevisiae bakery strains are polyphyletic with 67% of strains clustering into two main clades: most industrial strains were tetraploid and clustered with strains having diverse origins, including beer. By contrast, most sourdough strains were diploid and grouped in a second clade of strains having mosaic genomes and diverse origins, including fruits and natural environments. They harbored a higher copy number of genes involved in maltose utilization, and a high level of gene flow from multiple contributors was detected. Bakery strains displayed higher CO2 production than do strains from other domesticated lineages (such as beer and wine), revealing a specific phenotypic signature of domestication. Interestingly, industrial strains had a shorter fermentation onset than sourdough strains, which were better adapted to a sourdough-like environment, suggesting divergent selection by industrial and artisanal processes. Our results reveal that the domestication of bakery yeast has been accompanied by dispersion, hybridization, and divergent selection through industrial and artisanal processes.


Asunto(s)
Pan/microbiología , Domesticación , Saccharomyces cerevisiae/clasificación , Saccharomyces cerevisiae/genética , Cerveza/microbiología , Fermentación , Fenotipo , Vino/microbiología
15.
Food Microbiol ; 94: 103666, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33279089

RESUMEN

This work was performed to investigate on the yeast ecology of durum wheat to evaluate the interaction between kernel yeasts and the commercial baker's yeast Saccharomyces cerevisiae during dough leavening. Yeast populations were studied in 39 genotypes of durum wheat cultivated in Sicily. The highest level of kernel yeasts was 2.9 Log CFU/g. A total of 413 isolates was collected and subjected to phenotypic and genotypic characterization. Twenty-three yeast species belonging to 11 genera have been identified. Filobasidium oeirense, Sporobolomyces roseus and Aureobasidium pullulans were the species most commonly found in durum wheat kernels. Doughs were co-inoculated with yeasts isolated from wheat kernels and commercial Saccharomyces cerevisiae, in order to evaluate the interactions between yeasts and the leavening performance. Yeast populations of all doughs have been monitored as well as dough volume increase and weight loss (as CO2) measured after 2 h of fermentation. The doughs whose final volume was higher than control dough (inoculated exclusively with S. cerevisiae) were those inoculated with Naganishia albida, Vishniacozyma dimennae (118 mL each), and Candida parapsilosis (102 mL). The weight losses were variable, depending on the co-culture used with S. cerevisiae and the values were in the range of 0.08-1.00 g CO2/100 g. The kernel yeasts species C. parapsilosis, N. albida, P. terrestris, R. mucilaginosa and V. dimennae deserves future attention to be co-inoculated with the commercial starter S. cerevisiae in order to improve the sensory characteristics of bread.


Asunto(s)
Pan/microbiología , Saccharomyces cerevisiae/metabolismo , Triticum/microbiología , Levaduras/metabolismo , Pan/análisis , Técnicas de Cocultivo , Fermentación , Harina/análisis , Harina/microbiología , Manipulación de Alimentos , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Semillas/microbiología , Gusto , Triticum/genética , Levaduras/clasificación , Levaduras/genética , Levaduras/crecimiento & desarrollo
16.
J Cell Sci ; 133(23)2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33172983

RESUMEN

Matrix resorption is essential to the clearance of the extracellular matrix (ECM) after normal wound healing. A disruption in these processes constitutes a main component of fibrotic diseases, characterized by excess deposition and diminished clearance of fibrillar ECM proteins, such as collagen type I. The mechanisms and stimuli regulating ECM resorption in the lung remain poorly understood. Recently, agonism of dopamine receptor D1 (DRD1), which is predominantly expressed on fibroblasts in the lung, has been shown to accelerate tissue repair and clearance of ECM following bleomycin injury in mice. Therefore, we investigated whether DRD1 receptor signaling promotes the degradation of collagen type I by lung fibroblasts. For cultured fibroblasts, we found that DRD1 agonism enhances extracellular cleavage, internalization and lysosomal degradation of collagen I mediated by cathepsin K, which results in reduced stiffness of cell-derived matrices, as measured by atomic force microscopy. In vivo agonism of DRD1 similarly enhanced fibrillar collagen degradation by fibroblasts, as assessed by tissue labeling with a collagen-hybridizing peptide. Together, these results implicate DRD1 agonism in fibroblast-mediated collagen clearance, suggesting an important role for this mechanism in fibrosis resolution.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Colágeno Tipo I , Fibroblastos , Animales , Catepsina K/genética , Células Cultivadas , Colágeno , Colágeno Tipo I/genética , Matriz Extracelular , Pulmón , Ratones , Receptores de Dopamina D1/genética
17.
Sci Adv ; 6(37)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917705

RESUMEN

DNA double-strand breaks (DSBs) are highly toxic lesions that can drive genetic instability. These lesions also contribute to the efficacy of radiotherapy and many cancer chemotherapeutics. DNA repair efficiency is regulated by both intracellular and extracellular chemical signals. However, it is largely unknown whether this process is regulated by physical stimuli such as extracellular mechanical signals. Here, we report that DSB repair is regulated by extracellular mechanical signals. Low extracellular matrix (ECM) stiffness impairs DSB repair and renders cells sensitive to genotoxic agents. Mechanistically, we found that the MAP4K4/6/7 kinases are activated and phosphorylate ubiquitin in cells at low stiffness. Phosphorylated ubiquitin impairs RNF8-mediated ubiquitin signaling at DSB sites, leading to DSB repair deficiency. Our results thus demonstrate that ECM stiffness regulates DSB repair efficiency and genotoxic sensitivity through MAP4K4/6/7 kinase-mediated ubiquitin phosphorylation, providing a previously unidentified regulation in DSB-induced ubiquitin signaling.


Asunto(s)
Reparación del ADN , Ubiquitina-Proteína Ligasas , Daño del ADN , Matriz Extracelular/metabolismo , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/metabolismo
18.
Microorganisms ; 8(7)2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32629873

RESUMEN

Gwell is a traditional mesophilic fermented milk from the Brittany region of France. The fermentation process is based on a back-slopping method. The starter is made from a portion of the previous Gwell production, so that Gwell is both the starter and final product for consumption. In a participatory research framework involving 13 producers, Gwell was characterized from both the sensory and microbial points of view and was defined by its tangy taste and smooth and dense texture. The microbial community of typical Gwell samples was studied using both culture-dependent and culture-independent approaches. Lactococcus lactis was systematically identified in Gwell, being represented by both subspecies cremoris and lactis biovar diacetylactis which were always associated. Geotrichum candidum was also found in all the samples. The microbial composition was confirmed by 16S and ITS2 metabarcoding analysis. We were able to reconstruct the history of Gwell exchanges between producers, and thus obtained the genealogy of the samples we analyzed. The samples clustered in two groups which were also differentiated by their microbial composition, and notably by the presence or absence of yeasts identified as Kazachstania servazii and Streptococcus species.

19.
Microorganisms ; 8(2)2020 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-32053958

RESUMEN

Sourdoughs harbor simple microbial communities usually composed of a few prevailing lactic acid bacteria species (LAB) and yeast species. However, yeast and LAB found in sourdough have been described as highly diverse. Even if LAB and yeast associations have been widely documented, the nature of the interactions between them has been poorly described. These interactions define the composition and structure of sourdough communities, and therefore, the characteristics of the final bread product. In this study, the nature of the interactions between strains of two commonly found sourdough yeast species, Kazachstania humilis and Saccharomyces cerevisiae, and lactic acid bacteria isolated from sourdoughs has been analyzed. Population density analysis showed no evidence of positive interactions, but instead revealed neutral or negative asymmetric interaction outcomes. When in coculture, the yeasts´ population size decreased in the presence of LAB regardless of the strain, while the LAB´s population size was rarely influenced by the presence of yeasts. However, a higher maltose depletion was shown in maltose-negative K. humilis and maltose-positive obligately heterofermentative LAB cocultures compared to monocultures. In addition, tested pairs of obligately heterofermentative LAB and K. humilis strains leavened dough as much as couples of LAB and S. cerevisiae strains, while K. humilis strains never leavened dough as much as S. cerevisiae when in monoculture. Taken together, our results demonstrate that even if higher fermentation levels with increased maltose depletion were detected for K. humilis and obligately heterofermentative LAB pairs, these interactions cannot be ecologically classified as positive, leading us to rethink the established hypothesis of coexistence by facilitation in sourdoughs.

20.
Reprod Sci ; 27(4): 1074-1085, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32056132

RESUMEN

Uterine fibroids (UFs) are benign myometrial neoplasms. The mechanical environment activates signaling through the Hippo pathway effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding domain (TAZ) in other fibrotic disorders. Here, we assess the differences in YAP/TAZ responsiveness to signals in UF compared with myometrium (Myo). Matched samples of UF and Myo were collected. Atomic force microscopy (AFM) was used to determine in situ stiffness. Cells were plated sparsely on hydrogels or at confluence. Ten nanomolars of estradiol (E2) and 100 nM progesterone (P4) were used. Immunostaining for YAP/TAZ and extracellular matrix (ECM) proteins was performed. Cells were incubated with control or YAP1 (YAP)/WWTR1 (TAZ) small interfering RNA (siRNA). Real time qPCR was completed for connective tissue growth factor (CTGF). Cells were treated with verteporfin (a YAP inhibitor) or Y27632 (a ROCK inhibitor), and ECM gene expression was analyzed. Paired t test and Wilcoxon sign-rank test were used. AFM-measured tissue stiffness and YAP/TAZ nuclear localization in situ and in confluent cells were higher in UF compared with Myo (p < 0.05). Decreasing substrate stiffness reduced YAP/TAZ nuclear localization for both Myo and UF (p = 0.05). Stimulating cells with E2 or P4 increased YAP/TAZ nuclear localization, but only in Myo (p = 0.01). UFs had increased FN, COLI, and COLIII deposition. Following siRNA targeting, CTGF was found to be statistically decreased. Verteporfin treatment reduced cell survival and reduced FN deposition. Treatment with Y27632 demonstrated better cell tolerance and a reduction in ECM deposition. The mechanosensitive pathway may be linked to YAP/TAZ function and involved in transducing fibroid growth.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Estradiol/metabolismo , Leiomioma/metabolismo , Miometrio/metabolismo , Progesterona/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Neoplasias Uterinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Amidas/administración & dosificación , Módulo de Elasticidad/efectos de los fármacos , Inhibidores Enzimáticos/administración & dosificación , Estradiol/administración & dosificación , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Miometrio/efectos de los fármacos , Progesterona/administración & dosificación , Piridinas/administración & dosificación , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Verteporfina/administración & dosificación , Proteínas Señalizadoras YAP , Quinasas Asociadas a rho/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...