Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Insects ; 15(4)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38667359

RESUMEN

Despite the importance of pollinators to ecosystem functioning and human food production, comprehensive pollinator monitoring data are still lacking across most regions of the world. Policy-makers have recently prioritised the development of large-scale monitoring programmes for pollinators to better understand how populations respond to land use, environmental change and restoration measures in the long term. Designing such a monitoring programme is challenging, partly because it requires both ecological knowledge and advanced knowledge in sampling design. This study aims to develop a conceptual framework to facilitate the spatial sampling design of large-scale surveillance monitoring. The system is designed to detect changes in pollinator species abundances and richness, focusing on temperate agroecosystems. The sampling design needs to be scientifically robust to address questions of agri-environmental policy at the scales of interest. To this end, we followed a six-step procedure as follows: (1) defining the spatial sampling units, (2) defining and delimiting the monitoring area, (3) deciding on the general sampling strategy, (4) determining the sample size, (5) specifying the sampling units per sampling interval, and (6) specifying the pollinator survey plots within each sampling unit. As a case study, we apply this framework to the "Wild bee monitoring in agricultural landscapes of Germany" programme. We suggest this six-step procedure as a conceptual guideline for the spatial sampling design of future large-scale pollinator monitoring initiatives.

2.
Genome Biol Evol ; 15(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085065

RESUMEN

Young grapevines (Vitis vinifera) suffer and eventually can die from the crown gall disease caused by the plant pathogen Allorhizobium vitis (Rhizobiaceae). Virulent members of A. vitis harbor a tumor-inducing plasmid and induce formation of crown galls due to the oncogenes encoded on the transfer DNA. The expression of oncogenes in transformed host cells induces unregulated cell proliferation and metabolic and physiological changes. The crown gall produces opines uncommon to plants, which provide an important nutrient source for A. vitis harboring opine catabolism enzymes. Crown galls host a distinct bacterial community, and the mechanisms establishing a crown gall-specific bacterial community are currently unknown. Thus, we were interested in whether genes homologous to those of the tumor-inducing plasmid coexist in the genomes of the microbial species coexisting in crown galls. We isolated 8 bacterial strains from grapevine crown galls, sequenced their genomes, and tested their virulence and opine utilization ability in bioassays. In addition, the 8 genome sequences were compared with 34 published bacterial genomes, including closely related plant-associated bacteria not from crown galls. Homologous genes for virulence and opine anabolism were only present in the virulent Rhizobiaceae. In contrast, homologs of the opine catabolism genes were present in all strains including the nonvirulent members of the Rhizobiaceae and non-Rhizobiaceae. Gene neighborhood and sequence identity of the opine degradation cluster of virulent and nonvirulent strains together with the results of the opine utilization assay support the important role of opine utilization for cocolonization in crown galls, thereby shaping the crown gall community.


Asunto(s)
Neoplasias , Tumores de Planta , Tumores de Planta/microbiología , Bacterias/genética , Plásmidos , Plantas/genética , Genómica
3.
Microbiome ; 11(1): 246, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37936139

RESUMEN

BACKGROUND: The lack of water is a major constraint for microbial life in hyperarid deserts. Consequently, the abundance and diversity of microorganisms in common habitats such as soil are strongly reduced, and colonization occurs primarily by specifically adapted microorganisms that thrive in particular refugia to escape the harsh conditions that prevail in these deserts. We suggest that plants provide another refugium for microbial life in hyperarid deserts. We studied the bacterial colonization of Tillandsia landbeckii (Bromeliaceae) plants, which occur in the hyperarid regions of the Atacama Desert in Chile, one of the driest and oldest deserts on Earth. RESULTS: We detected clear differences between the bacterial communities being plant associated to those of the bare soil surface (PERMANOVA, R2 = 0.187, p = 0.001), indicating that Tillandsia plants host a specific bacterial community, not only dust-deposited cells. Moreover, the bacterial communities in the phyllosphere were distinct from those in the laimosphere, i.e., on buried shoots (R2 = 0.108, p = 0.001), indicating further habitat differentiation within plant individuals. The bacterial taxa detected in the phyllosphere are partly well-known phyllosphere colonizers, but in addition, some rather unusual taxa (subgroup2 Acidobacteriae, Acidiphilum) and insect endosymbionts (Wolbachia, "Candidatus Uzinura") were found. The laimosphere hosted phyllosphere-associated as well as soil-derived taxa. The phyllosphere bacterial communities showed biogeographic patterns across the desert (R2 = 0.331, p = 0.001). These patterns were different and even more pronounced in the laimosphere (R2 = 0.467, p = 0.001), indicating that different factors determine community assembly in the two plant compartments. Furthermore, the phyllosphere microbiota underwent temporal changes (R2 = 0.064, p = 0.001). CONCLUSIONS: Our data demonstrate that T. landbeckii plants host specific bacterial communities in the phyllosphere as well as in the laimosphere. Therewith, these plants provide compartment-specific refugia for microbial life in hyperarid desert environments. The bacterial communities show biogeographic patterns and temporal variation, as known from other plant microbiomes, demonstrating environmental responsiveness and suggesting that bacteria inhabit these plants as viable microorganisms. Video Abstract.


Asunto(s)
Microbiota , Tillandsia , Humanos , Microbiología del Suelo , Refugio de Fauna , Bacterias/genética , Plantas/microbiología , Suelo , Clima Desértico
4.
R Soc Open Sci ; 7(7): 200225, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32874623

RESUMEN

Studying the pollen preferences of introduced bees allows us to investigate how species use host-plants when establishing in new environments. Osmia cornifrons is a solitary bee introduced into North America from East Asia for pollination of Rosaceae crops such as apples and cherries. We investigated whether O. cornifrons (i) more frequently collected pollen from host-plant species they coevolved with from their geographic origin, or (ii) prefer host-plant species of specific plant taxa independent of origin. To address this question, using pollen metabarcoding, we examined the identity and relative abundance of pollen in larval provisions from nests located in different landscapes with varying abundance of East-Asian and non-Asian plant species. Our results show that O. cornifrons collected more pollen from plant species from their native range. Plants in the family Rosaceae were their most preferred pollen hosts, but they differentially collected species native to East Asia, Europe, or North America depending on the landscape. Our results suggest that while O. cornifrons frequently collect pollen of East-Asian origin, the collection of pollen from novel species within their phylogenetic familial affinities is common and can facilitate pollinator establishment. This phylogenetic preference highlights the effectiveness of O. cornifrons as crop pollinators of a variety of Rosaceae crops from different geographic origins. Our results imply that globalization of non-native plant species may ease the naturalization of their coevolved pollinators outside of their native range.

6.
FEMS Microbiol Ecol ; 95(3)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649283

RESUMEN

The carnivorous Venus flytrap (Dionaea muscipula) overcomes environmental nutrient limitation by capturing small animals. Such prey is digested with an acidic enzyme-containing mucilage that is secreted into the closed trap. However, surprisingly little is known about associations with microorganisms. Therefore, we assessed microbiotas of traps and petioles for the Venus flytrap by 16S amplicon meta-barcoding. We also performed time-series assessments of dynamics during digestion in traps and experimental acidification of petioles. We found that the traps hosted distinct microbiotas that differed from adjacent petioles. Further, they showed a significant taxonomic turnover during digestion. Following successful catches, prey-associated bacteria had strong effects on overall composition. With proceeding digestion, however, microbiotas were restored to compositions resembling pre-digestion stages. A comparable, yet less extensive shift was found when stimulating digestion with coronatine. Artificial acidification of petioles did not induce changes towards trap-like communities. Our results show that trap microbiota were maintained during digestion despite harsh conditions and recovered after short-term disturbances through prey microbiota. This indicates trap-specific and resilient associations. By mapping to known genomes, we predicted putative adaptations and functional implications for the system, yet direct mechanisms and quantification of host benefits, like the involvement in digestion, remain to be addressed.


Asunto(s)
Droseraceae/microbiología , Microbiota , Aminoácidos/farmacología , Animales , Interacciones Microbiota-Huesped , Indenos/farmacología , Metagenómica , Microbiota/efectos de los fármacos , Microbiota/genética , Hojas de la Planta/microbiología , ARN Ribosómico 16S/genética
7.
Front Microbiol ; 9: 2859, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564202

RESUMEN

Tropical peat swamp forests sequester globally significant stores of carbon in deep layers of waterlogged, anoxic, acidic and nutrient-depleted peat. The roles of microbes in supporting these forests through the formation of peat, carbon sequestration and nutrient cycling are virtually unknown. This study investigated physicochemical peat properties and microbial diversity between three dominant tree species: Shorea uliginosa (Dipterocarpaceae), Koompassia malaccensis (legumes associated with nitrogen-fixing bacteria), Eleiodoxa conferta (palm) and depths (surface, 45 and 90 cm) using microbial 16S rRNA gene amplicon sequencing. Water pH, oxygen, nitrogen, phosphorus, total phenolic contents and C/N ratio differed significantly between depths, but not tree species. Depth also strongly influenced microbial diversity and composition, while both depth and tree species exhibited significant impact on the archaeal communities. Microbial diversity was highest at the surface, where fresh leaf litter accumulates, and nutrient supply is guaranteed. Nitrogen was the core parameter correlating to microbial communities, but the interactive effects from various environmental variables displayed significant correlation to relative abundance of major microbial groups. Proteobacteria was the dominant phylum and the most abundant genus, Rhodoplanes, might be involved in nitrogen fixation. The most abundant methanogens and methanotrophs affiliated, respectively, to families Methanomassiliicoccaceae and Methylocystaceae. Our results demonstrated diverse microbial communities and provide valuable insights on microbial ecology in these extreme ecosystems.

8.
Microbiome ; 6(1): 229, 2018 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-30579360

RESUMEN

BACKGROUND: In previous studies, the gram-positive firmicute genus Paenibacillus was found with significant abundances in nests of wild solitary bees. Paenibacillus larvae is well-known for beekeepers as a severe pathogen causing the fatal honey bee disease American foulbrood, and other members of the genus are either secondary invaders of European foulbrood or considered a threat to honey bees. We thus investigated whether Paenibacillus is a common bacterium associated with various wild bees and hence poses a latent threat to honey bees visiting the same flowers. RESULTS: We collected 202 samples from 82 individuals or nests of 13 bee species at the same location and screened each for Paenibacillus using high-throughput sequencing-based 16S metabarcoding. We then isolated the identified strain Paenibacillus MBD-MB06 from a solitary bee nest and sequenced its genome. We did find conserved toxin genes and such encoding for chitin-binding proteins, yet none specifically related to foulbrood virulence or chitinases. Phylogenomic analysis revealed a closer relationship to strains of root-associated Paenibacillus rather than strains causing foulbrood or other accompanying diseases. We found anti-microbial evidence within the genome, confirmed by experimental bioassays with strong growth inhibition of selected fungi as well as gram-positive and gram-negative bacteria. CONCLUSIONS: The isolated wild bee associate Paenibacillus MBD-MB06 is a common, but irregularly occurring part of wild bee microbiomes, present on adult body surfaces and guts and within nests especially in megachilids. It was phylogenetically and functionally distinct from harmful members causing honey bee colony diseases, although it shared few conserved proteins putatively toxic to insects that might indicate ancestral predisposition for the evolution of insect pathogens within the group. By contrast, our strain showed anti-microbial capabilities and the genome further indicates abilities for chitin-binding and biofilm-forming, suggesting it is likely a useful associate to avoid fungal penetration of the bee cuticula and a beneficial inhabitant of nests to repress fungal threats in humid and nutrient-rich environments of wild bee nests.


Asunto(s)
Abejas/microbiología , Genoma Bacteriano , Paenibacillus/aislamiento & purificación , Animales , Antibacterianos/farmacología , Toxinas Bacterianas/genética , Abejas/crecimiento & desarrollo , ADN Bacteriano/genética , ADN Ribosómico/genética , Infecciones por Bacterias Grampositivas/microbiología , Larva/microbiología , Metagenómica/métodos , Comportamiento de Nidificación , Paenibacillus/genética , Paenibacillus/fisiología , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos
9.
Microb Ecol ; 71(4): 938-53, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26790863

RESUMEN

Carnivorous plants of the genus Nepenthes have been studied for over a century, but surprisingly little is known about associations with microorganisms. The two species Nepenthes rafflesiana and Nepenthes hemsleyana differ in their pitcher-mediated nutrient sources, sequestering nitrogen from arthropod prey and arthropods as well as bat faeces, respectively. We expected bacterial communities living in the pitchers to resemble this diet difference. Samples were taken from different parts of the pitchers (leaf, peristome, inside, outside, digestive fluid) of both species. Bacterial communities were determined using culture-independent high-throughput amplicon sequencing. Bacterial richness and community structure were similar in leaves, peristomes, inside and outside walls of both plant species. Regarding digestive fluids, bacterial richness was higher in N. hemsleyana than in N. rafflesiana. Additionally, digestive fluid communities were highly variable in structure, with strain-specific differences in community composition between replicates. Acidophilic taxa were mostly of low abundance, except the genus Acidocella, which strikingly reached extremely high levels in two N. rafflesiana fluids. In N. hemsleyana fluid, some taxa classified as vertebrate gut symbionts as well as saprophytes were enriched compared to N. rafflesiana, with saprophytes constituting potential competitors for nutrients. The high variation in community structure might be caused by a number of biotic and abiotic factors. Nitrogen-fixing bacteria were present in both study species, which might provide essential nutrients to the plant at times of low prey capture and/or rare encounters with bats.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Nitrógeno/metabolismo , Acetobacteraceae/aislamiento & purificación , Animales , Artrópodos/microbiología , Bacterias/clasificación , Bacterias/genética , Fenómenos Fisiológicos Bacterianos , Biodiversidad , Brunei , Magnoliopsida/microbiología , Bacterias Fijadoras de Nitrógeno/clasificación , Bacterias Fijadoras de Nitrógeno/genética , Bacterias Fijadoras de Nitrógeno/aislamiento & purificación , Bacterias Fijadoras de Nitrógeno/metabolismo , Hojas de la Planta/microbiología , Rhizobiaceae/aislamiento & purificación , Simbiosis
10.
BMC Ecol ; 15: 20, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26194794

RESUMEN

BACKGROUND: Meta-barcoding of mixed pollen samples constitutes a suitable alternative to conventional pollen identification via light microscopy. Current approaches however have limitations in practicability due to low sample throughput and/or inefficient processing methods, e.g. separate steps for amplification and sample indexing. RESULTS: We thus developed a new primer-adapter design for high throughput sequencing with the Illumina technology that remedies these issues. It uses a dual-indexing strategy, where sample-specific combinations of forward and reverse identifiers attached to the barcode marker allow high sample throughput with a single sequencing run. It does not require further adapter ligation steps after amplification. We applied this protocol to 384 pollen samples collected by solitary bees and sequenced all samples together on a single Illumina MiSeq v2 flow cell. According to rarefaction curves, 2,000-3,000 high quality reads per sample were sufficient to assess the complete diversity of 95% of the samples. We were able to detect 650 different plant taxa in total, of which 95% were classified at the species level. Together with the laboratory protocol, we also present an update of the reference database used by the classifier software, which increases the total number of covered global plant species included in the database from 37,403 to 72,325 (93% increase). CONCLUSIONS: This study thus offers improvements for the laboratory and bioinformatical workflow to existing approaches regarding data quantity and quality as well as processing effort and cost-effectiveness. Although only tested for pollen samples, it is furthermore applicable to other research questions requiring plant identification in mixed and challenging samples.


Asunto(s)
Código de Barras del ADN Taxonómico , Cartilla de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Polen/clasificación , Animales , Abejas , Bases de Datos Factuales
11.
Microb Ecol ; 70(3): 579-84, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25921519

RESUMEN

Bacterial infections secondary to snakebites and human pathogens (e.g., Salmonella) have been linked to the oral microbiota of snakes and pet reptiles. Based on culture-dependent studies, it is speculated that snakes' oral microbiota reflects the fecal flora of their ingested preys. However, cultured-based techniques have been shown to be limited as they fail to identify unculturable microorganisms which represent the vast majority of the microbial diversity. Here, we used culture-independent high-throughput sequencing to identify reptile-associated pathogens and to characterize the oral microbial community of five snakes, one gecko, and two terrapins. Few potential human pathogens were detected at extremely low frequencies. Moreover, bacterial taxa represented in the snake's oral cavity bore little resemblance to their preys' fecal microbiota. Overall, we found distinct, highly diverse microbial communities with consistent, species-specific patterns contrary to previous culture-based studies. Our study does not support the widely held assumption that reptiles' oral cavity acts as pathogen reservoir and provides important insights for future research.


Asunto(s)
Reservorios de Enfermedades/veterinaria , Cadena Alimentaria , Boca/microbiología , Reptiles/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Reservorios de Enfermedades/microbiología , Heces/microbiología , Lagartos/microbiología , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN/veterinaria , Serpientes/microbiología , Tortugas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...