Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genome Announc ; 6(26)2018 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-29954887

RESUMEN

Five complete (H1N1)pdm09 viral sequences were recovered from hospitalized individuals during the 2015 influenza outbreak by metagenomic sequencing. Four of the genomes are from oropharyngeal swabs, and one is from an isolate. All five sequences belong to an emerging 6B clade. Studying them further is critical for outbreak preparedness.

2.
Wellcome Open Res ; 3: 44, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30167467

RESUMEN

Background: Mosquito-borne flaviviruses, such as dengue and Japanese encephalitis virus (JEV), cause life-threatening diseases, particularly in the tropics. Methods: Here we performed unbiased metagenomic sequencing of RNA extracted from the serum of four patients and the plasma of one patient, all hospitalized at a tertiary care centre in South India with severe or prolonged febrile illness, together with the serum from one healthy control, in 2014. Results: We identified and assembled a complete dengue virus type 3 sequence from a case of severe dengue fever. We also identified a small number of JEV sequences in the serum of two adults with febrile illness, including one with severe dengue. Phylogenetic analysis revealed that the dengue sequence belonged to genotype III. It has an estimated divergence time of 13.86 years from the most highly related Indian strains. In total, 11 amino acid substitutions were predicted for this strain in the antigenic envelope protein, when compared to the parent strain used for development of the first commercial dengue vaccine.  Conclusions: We demonstrate that both genome assembly and detection of a low number of viral sequences are possible through the unbiased sequencing of clinical material. These methods may help ascertain causal agents for febrile illnesses with no known cause.

3.
PeerJ ; 3: e1066, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26290780

RESUMEN

Neem (Azadirachta indica A. Juss) is one of the most versatile tropical evergreen tree species known in India since the Vedic period (1500 BC-600 BC). Neem tree is a rich source of limonoids, having a wide spectrum of activity against insect pests and microbial pathogens. Complex tetranortriterpenoids such as azadirachtin, salanin and nimbin are the major active principles isolated from neem seed. Absolutely nothing is known about the biochemical pathways of these metabolites in neem tree. To identify genes and pathways in neem, we sequenced neem genomes and transcriptomes using next generation sequencing technologies. Assembly of Illumina and 454 sequencing reads resulted in 267 Mb, which accounts for 70% of estimated size of neem genome. We predicted 44,495 genes in the neem genome, of which 32,278 genes were expressed in neem tissues. Neem genome consists about 32.5% (87 Mb) of repetitive DNA elements. Neem tree is phylogenetically related to citrus, Citrus sinensis. Comparative analysis anchored 62% (161 Mb) of assembled neem genomic contigs onto citrus chromomes. Ultrahigh performance liquid chromatography-mass spectrometry-selected reaction monitoring (UHPLC-MS/SRM) method was used to quantify azadirachtin, nimbin, and salanin from neem tissues. Weighted Correlation Network Analysis (WCGNA) of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway. This study provides genomic, transcriptomic and quantity of top three neem metabolites resource, which will accelerate basic research in neem to understand biochemical pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA