Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biometeorol ; 67(9): 1477-1492, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37464201

RESUMEN

Data on historical soil moisture is crucial for assessing and responding to droughts that commonly occur in climate change-affected countries. The Himalayan temperate forests in Pakistan are particularly at risk of climate change. Developing nations lack the means to gather surface soil moisture (SSM) information. Tree rings are one way to bridge this gap. Here, we employed dendrochronological methods on climate-sensitive tree rings from Abies pindrow to reconstruct the SSM in the Western Himalayan mountain region of Pakistan from 1855 to 2020. December (r = 0.41), May (r = 0.40), and June (r = 0.65) SSMs were found to be the limiting factors for A. pindrow growth. However, only the June SSM showed reconstruction possibility (coefficient of efficiency = 0.201 and reduction of error = 0.325). Over the studied period, we found 6 years (wet year) when June SSM was above the threshold of 32.04 (mean + 2 δ) and 1 year (dry year) when June SSM was below the threshold of 21.28 (mean - 2 δ). It was revealed that 1921 and 1917 were the driest and wettest SSM of all time, with means of 19.34 and 36.49, respectively. Our study shows that winter soil moisture is critical for the growing season in the context of climate change. Climate change has broad impacts on tree growth in the Western Himalayas. This study will assist various stakeholders in understanding and managing local and regional climate change.


Asunto(s)
Abies , Suelo , Pakistán , Bosques , Cambio Climático , Sequías
2.
Molecules ; 27(6)2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35335306

RESUMEN

Nano-bioremediation application is an ecologically and environmentally friendly technique to overcome the catastrophic situation in soil because of petroleum waste contamination. We evaluated the efficiency of oil-degrading bacterial consortium and silver nanoparticles (AgNPs) with or without fertilizer to remediate soils collected from petroleum waste contaminated oil fields. Physicochemical characteristics of control soil and petroleum contaminated soils were assessed. Four oil-degrading strains, namely Bacillus pumilus (KY010576), Exiguobacteriaum aurantiacum (KY010578), Lysinibacillus fusiformis (KY010586), and Pseudomonas putida (KX580766), were selected based on their in vitrohydrocarbon-degrading efficiency. In a lab experiment, contaminated soils were treated alone and with combined amendments of the bacterial consortium, AgNPs, and fertilizers (ammonium nitrate and diammonium phosphate). We detected the degradation rate of total petroleum hydrocarbons (TPHs) of the soil samples with GC-FID at different intervals of the incubation period (0, 5, 20, 60, 240 days). The bacterial population (CFU/g) was also monitored during the entire period of incubation. The results showed that 70% more TPH was degraded with a consortium with their sole application in 20 days of incubation. There was a positive correlation between TPH degradation and the 100-fold increase in bacterial population in contaminated soils. This study revealed that bacterial consortiums alone showed the maximum increase in the degradation of TPHs at 20 days. The application of nanoparticles and fertilizer has non-significant effects on the consortium degradation potential. Moreover, fertilizer alone or in combination with AgNPs and consortium slows the rate of degradation of TPHs over a short period. Still, it subsequently accelerates the rate of degradation of TPHs, and a negligible amount remains at the end of the incubation period.


Asunto(s)
Nanopartículas del Metal , Petróleo , Contaminantes del Suelo , Biodegradación Ambiental , Consorcios Microbianos , Petróleo/análisis , Plata , Suelo , Microbiología del Suelo , Contaminantes del Suelo/análisis
3.
Alzheimers Res Ther ; 1(2): 7, 2009 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-19845950

RESUMEN

INTRODUCTION: There are no empiric data to support guidelines for duration of therapy with antidementia drugs. This study examined whether persistent use of antidementia drugs slows clinical progression of Alzheimer disease (AD) assessed by repeated measures on serial tests of cognition and function. METHODS: Six hundred forty-one probable AD patients were followed prospectively at an academic center over 20 years. Cumulative drug exposure was expressed as a persistency index (PI) reflecting total years of drug use divided by total years of disease symptoms. Baseline and annual testing consisted of Mini-Mental State Examination (MMSE), Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog), Baylor Profound Mental Status Examination (BPMSE), Clinical Dementia Rating-Sum of Boxes (CDR-SB), Physical Self-Maintenance Scale (PSMS), and Instrumental Activities of Daily Living (IADL). Annual change in slope of neuropsychological and functional tests as predicted by follow-up time, PI, and the interaction of these two variables was evaluated. RESULTS: PI was associated with significantly slower rates of decline (with, without adjustment for covariates) on MMSE (P < 0.0001), PSMS (P < 0.05), IADL (P < 0.0001), and CDR-SB (P < 0.001). There was an insignificant trend (P = 0.053) for the PI to be associated with slower rate of decline on BPMSE. The association of PI with ADAS-Cog followed a quadratic trend (P < 0.01). Analysis including both linear and quadratic terms suggests that PI slowed ADAS-Cog decline temporarily. The magnitude of the favorable effect of a rate change in PI was: MMSE 1 point per year, PSMS 0.4 points per year, IADL 1.4 points per year, and CDR-SB 0.6 points per year. The change in mean test scores is additive over the follow-up period (3 +/- 1.94 years). CONCLUSIONS: Persistent drug treatment had a positive impact on AD progression assessed by multiple cognitive, functional, and global outcome measures. The magnitude of the treatment effect was clinically significant. Positive treatment effects were even found in those with advanced disease.

4.
Environ Toxicol ; 17(1): 49-62, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11847974

RESUMEN

Hydrocarbon contamination in soils may be toxic to plants and soil microorganisms and act as a source of groundwater contamination. The objective of this study was to evaluate the fate of diesel in soils with or without added nutrients. The soils examined either had or had not a previous history of hydrocarbon contamination. Particular aspects examined were soil respiration, changes in microbial population, breakdown of diesel hydrocarbons, and phytotoxicity to the germination of perennial ryegrass. Soil respiration was measured as evolved CO2. Bacterial population was determined as colony forming units in dilution plates and fungal activity was measured as hyphal length. The fate of individual hydrocarbons was determined by gas chromatography-mass spectrometry after extraction with dichloromethane. When diesel was added to soil with no previous history of hydrocarbon contamination at rates up to 50 mg/g, the respiration response showed a lag phase of 6 days and maximum respiration occurred at day 11. The lag phase was 2 days and maximum respiration occurred at day 3 in soil with a previous history of hydrocarbon contamination. After the peak, respiration decreased up to about 20 days in both soils. Thereafter, respiration become more or less constant but substantially greater than the control. N and P addition along with diesel did not reduce the lag phase but increased the respiration over the first 20 days of incubation. Diesel addition with or without N and P increased the bacterial population 10- to 100-fold but fungal hyphal length did not increase. Diesel addition at a rate of 136 mg/g did not increase the microbial population. Removal of inhibition to germination of perennial ryegrass was linked to the decomposition of nC10 and nC11 hydrocarbons and took from 11 to 30 days at diesel additions up to 50 mg/g depending on the soil. Inhibition to germination of perennial ryegrass persisted to more than 24 weeks at the 136 mg/g of diesel addition.


Asunto(s)
Carcinógenos Ambientales/efectos adversos , Germinación/efectos de los fármacos , Lolium/fisiología , Contaminantes del Suelo/efectos adversos , Dióxido de Carbono/análisis , Carcinógenos Ambientales/análisis , Carcinógenos Ambientales/metabolismo , Hongos , Gasolina , Lolium/efectos de los fármacos , Lolium/crecimiento & desarrollo , Consumo de Oxígeno , Raíces de Plantas , Dinámica Poblacional , Semillas/crecimiento & desarrollo , Microbiología del Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...