Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Stem Cell ; 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38718796

RESUMEN

Mutations in ARID1B, a member of the mSWI/SNF complex, cause severe neurodevelopmental phenotypes with elusive mechanisms in humans. The most common structural abnormality in the brain of ARID1B patients is agenesis of the corpus callosum (ACC), characterized by the absence of an interhemispheric white matter tract that connects distant cortical regions. Here, we find that neurons expressing SATB2, a determinant of callosal projection neuron (CPN) identity, show impaired maturation in ARID1B+/- neural organoids. Molecularly, a reduction in chromatin accessibility of genomic regions targeted by TCF-like, NFI-like, and ARID-like transcription factors drives the differential expression of genes required for corpus callosum (CC) development. Through an in vitro model of the CC tract, we demonstrate that this transcriptional dysregulation impairs the formation of long-range axonal projections, causing structural underconnectivity. Our study uncovers new functions of the mSWI/SNF during human corticogenesis, identifying cell-autonomous axonogenesis defects in SATB2+ neurons as a cause of ACC in ARID1B patients.

2.
EMBO J ; 42(22): e113213, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37842725

RESUMEN

The establishment and maintenance of apical-basal polarity is a fundamental step in brain development, instructing the organization of neural progenitor cells (NPCs) and the developing cerebral cortex. Particularly, basally located extracellular matrix (ECM) is crucial for this process. In vitro, epithelial polarization can be achieved via endogenous ECM production, or exogenous ECM supplementation. While neuroepithelial development is recapitulated in neural organoids, the effects of different ECM sources in tissue morphogenesis remain underexplored. Here, we show that exposure to a solubilized basement membrane matrix substrate, Matrigel, at early neuroepithelial stages causes rapid tissue polarization and rearrangement of neuroepithelial architecture. In cultures exposed to pure ECM components or unexposed to any exogenous ECM, polarity acquisition is slower and driven by endogenous ECM production. After the onset of neurogenesis, tissue architecture and neuronal differentiation are largely independent of the initial ECM source, but Matrigel exposure has long-lasting effects on tissue patterning. These results advance the knowledge on mechanisms of exogenously and endogenously guided morphogenesis, demonstrating the self-sustainability of neuroepithelial cultures by endogenous processes.


Asunto(s)
Matriz Extracelular , Organoides , Humanos , Morfogénesis
3.
Elife ; 122023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36989136

RESUMEN

During development of the human cerebral cortex, multipotent neural progenitors generate excitatory neurons and glial cells. Investigations of the transcriptome and epigenome have revealed important gene regulatory networks underlying this crucial developmental event. However, the posttranscriptional control of gene expression and protein abundance during human corticogenesis remains poorly understood. We addressed this issue by using human telencephalic brain organoids grown using a dual reporter cell line to isolate neural progenitors and neurons and performed cell class and developmental stage-specific transcriptome and proteome analysis. Integrating the two datasets revealed modules of gene expression during human corticogenesis. Investigation of one such module uncovered mTOR-mediated regulation of translation of the 5'TOP element-enriched translation machinery in early progenitor cells. We show that in early progenitors partial inhibition of the translation of ribosomal genes prevents precocious translation of differentiation markers. Overall, our multiomics approach proposes novel posttranscriptional regulatory mechanisms crucial for the fidelity of cortical development.


Asunto(s)
Proteoma , Transcriptoma , Humanos , Proteoma/metabolismo , Neurogénesis/genética , Encéfalo/metabolismo , Organoides/metabolismo
4.
Curr Biol ; 32(22): 4817-4831.e9, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36208624

RESUMEN

Cell migration is crucial for organismal development and shapes organisms in health and disease. Although a lot of research has revealed the role of intracellular components and extracellular signaling in driving single and collective cell migration, the influence of physical properties of the tissue and the environment on migration phenomena in vivo remains less explored. In particular, the role of the extracellular matrix (ECM), which many cells move upon, is currently unclear. To overcome this gap, we use zebrafish optic cup formation, and by combining novel transgenic lines and image analysis pipelines, we study how ECM properties influence cell migration in vivo. We show that collectively migrating rim cells actively move over an immobile extracellular matrix. These cell movements require cryptic lamellipodia that are extended in the direction of migration. Quantitative analysis of matrix properties revealed that the topology of the matrix changes along the migration path. These changes in matrix topologies are accompanied by changes in the dynamics of cell-matrix interactions. Experiments and theoretical modeling suggest that matrix porosity could be linked to efficient migration. Indeed, interfering with matrix topology by increasing its porosity results in a loss of cryptic lamellipodia, less-directed cell-matrix interactions, and overall inefficient migration. Thus, matrix topology is linked to the dynamics of cell-matrix interactions and the efficiency of directed collective rim cell migration during vertebrate optic cup morphogenesis.


Asunto(s)
Comunicación Celular , Pez Cebra , Animales , Morfogénesis , Movimiento Celular , Matriz Extracelular/metabolismo
5.
Cell Death Differ ; 28(1): 52-67, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32483384

RESUMEN

Understanding etiology of human neurological and psychiatric diseases is challenging. Genomic changes, protracted development, and histological features unique to human brain development limit the disease aspects that can be investigated using model organisms. Hence, in order to study phenotypes associated with human brain development, function, and disease, it is necessary to use alternative experimental systems that are accessible, ethically justified, and replicate human context. Human pluripotent stem cell (hPSC)-derived brain organoids offer such a system, which recapitulates features of early human neurodevelopment in vitro, including the generation, proliferation, and differentiation of neural progenitors into neurons and glial cells and the complex interactions among the diverse, emergent cell types of the developing brain in three-dimensions (3-D). In recent years, numerous brain organoid protocols and related techniques have been developed to recapitulate aspects of embryonic and fetal brain development in a reproducible and predictable manner. Altogether, these different organoid technologies provide distinct bioassays to unravel novel, disease-associated phenotypes and mechanisms. In this review, we summarize how the diverse brain organoid methods can be utilized to enhance our understanding of brain disorders. FACTS: Brain organoids offer an in vitro approach to study aspects of human brain development and disease. Diverse brain organoid techniques offer bioassays to investigate new phenotypes associated with human brain disorders that are difficult to study in monolayer cultures. Brain organoids have been particularly useful to study phenomena and diseases associated with neural progenitor morphology, survival, proliferation, and differentiation. OPEN QUESTION: Future brain organoid research needs to aim at later stages of neurodevelopment, linked with neuronal activity and connections, to unravel further disease-associated phenotypes. Continued improvement of existing organoid protocols is required to generate standardized methods that recapitulate in vivo-like spatial diversity and complexity.


Asunto(s)
Encéfalo/citología , Feto/citología , Organoides/citología , Células Madre Pluripotentes/citología , Animales , Bioensayo , Técnicas de Cultivo Tridimensional de Células , Diferenciación Celular/genética , Humanos , Neuronas/citología , Neuronas/metabolismo , Células Madre Pluripotentes/metabolismo
6.
Elife ; 62017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28372636

RESUMEN

Organ formation is a multi-scale event that involves changes at the intracellular, cellular and tissue level. Organogenesis often starts with the formation of characteristically shaped organ precursors. However, the cellular mechanisms driving organ precursor formation are often not clear. Here, using zebrafish, we investigate the epithelial rearrangements responsible for the development of the hemispherical retinal neuroepithelium (RNE), a part of the optic cup. We show that in addition to basal shrinkage of RNE cells, active migration of connected epithelial cells into the RNE is a crucial player in its formation. This cellular movement is driven by progressive cell-matrix contacts and actively translocates prospective RNE cells to their correct location before they adopt neuroepithelial fate. Failure of this migration during neuroepithelium formation leads to ectopic determination of RNE cells and consequently impairs optic cup formation. Overall, this study illustrates how spatiotemporal coordination between morphogenic movements and fate determination critically influences organogenesis.


Asunto(s)
Movimiento Celular , Ojo/embriología , Morfogénesis , Células Neuroepiteliales/fisiología , Pez Cebra/embriología , Animales
7.
Mech Dev ; 142: 62-74, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27497746

RESUMEN

Microvillus inclusion disease (MVID) is a life-threatening enteropathy characterised by malabsorption and incapacitating fluid loss due to chronic diarrhoea. Histological analysis has revealed that enterocytes in MVID patients exhibit reduction of microvilli, presence of microvillus inclusion bodies and intestinal villus atrophy, whereas genetic linkage analysis has identified mutations in myosin Vb gene as the main cause of MVID. In order to understand the cellular basis of MVID and the associated formation of inclusion bodies, an animal model that develops ex utero and is tractable genetically as well as by microscopy would be highly useful. Here we report that the intestine of the zebrafish goosepimples (gsp)/myosin Vb (myoVb) mutant shows severe reduction in intestinal folds - structures similar to mammalian villi. The loss of folds is further correlated with changes in the shape of enterocytes. In striking similarity with MVID patients, zebrafish gsp/myoVb mutant larvae exhibit microvillus atrophy, microvillus inclusions and accumulation of secretory material in enterocytes. We propose that the zebrafish gsp/myoVb mutant is a valuable model to study the pathophysiology of MVID. Furthermore, owing to the advantages of zebrafish in screening libraries of small molecules, the gsp mutant will be an ideal tool to identify compounds having therapeutic value against MVID.


Asunto(s)
Intestino Delgado/fisiopatología , Síndromes de Malabsorción/genética , Microvellosidades/patología , Mucolipidosis/genética , Proteínas Mutantes/genética , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Animales , Modelos Animales de Enfermedad , Humanos , Síndromes de Malabsorción/fisiopatología , Microvellosidades/genética , Mucolipidosis/fisiopatología , Mutación , Pez Cebra/genética , Pez Cebra/fisiología
8.
J Vis Exp ; (110): e53966, 2016 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-27167079

RESUMEN

Light sheet fluorescence microscopy (LSFM) is gaining more and more popularity as a method to image embryonic development. The main advantages of LSFM compared to confocal systems are its low phototoxicity, gentle mounting strategies, fast acquisition with high signal to noise ratio and the possibility of imaging samples from various angles (views) for long periods of time. Imaging from multiple views unleashes the full potential of LSFM, but at the same time it can create terabyte-sized datasets. Processing such datasets is the biggest challenge of using LSFM. In this protocol we outline some solutions to this problem. Until recently, LSFM was mostly performed in laboratories that had the expertise to build and operate their own light sheet microscopes. However, in the last three years several commercial implementations of LSFM became available, which are multipurpose and easy to use for any developmental biologist. This article is primarily directed to those researchers, who are not LSFM technology developers, but want to employ LSFM as a tool to answer specific developmental biology questions. Here, we use imaging of zebrafish eye development as an example to introduce the reader to LSFM technology and we demonstrate applications of LSFM across multiple spatial and temporal scales. This article describes a complete experimental protocol starting with the mounting of zebrafish embryos for LSFM. We then outline the options for imaging using the commercially available light sheet microscope. Importantly, we also explain a pipeline for subsequent registration and fusion of multiview datasets using an open source solution implemented as a Fiji plugin. While this protocol focuses on imaging the developing zebrafish eye and processing data from a particular imaging setup, most of the insights and troubleshooting suggestions presented here are of general use and the protocol can be adapted to a variety of light sheet microscopy experiments.


Asunto(s)
Embrión no Mamífero/embriología , Ojo/embriología , Microscopía Fluorescente/métodos , Pez Cebra/embriología , Animales , Biología Evolutiva , Desarrollo Embrionario , Luz
9.
Dev Cell ; 32(2): 203-19, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25600237

RESUMEN

Pseudostratified epithelia are widespread during animal development and feature elongated cells whose nuclei adopt various positions along the apicobasal cell axis. Before mitosis, nuclei migrate toward the apical surface, and subsequent divisions occur apically. So far, the exact purpose of this nuclear migration remained elusive. One hypothesis was that apical migration ensures that nuclei and centrosomes meet for mitosis. We here demonstrate that in zebrafish neuroepithelia apical nuclear migration occurs independently of centrosome position or integrity. It is a highly reproducible phenomenon linked to the cell cycle via CDK1 activity. We propose that the robustness of bringing nuclei apically for mitosis ensures that cells are capable of reintegrating into the epithelium after division. Nonapical divisions lead to cell delamination and formation of cell clusters that subsequently interfere with neuronal layering. Therefore, positioning divisions apically in pseudostratified neuroepithelia could serve to safeguard epithelial integrity and enable proper proliferation and maturation.


Asunto(s)
División Celular/fisiología , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Células Epiteliales/citología , Pez Cebra/metabolismo , Animales , Núcleo Celular/patología , Sacarosa en la Dieta/metabolismo , Epitelio/metabolismo , Epitelio/patología , Alimentos Formulados
10.
PLoS Genet ; 10(9): e1004614, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25233349

RESUMEN

The epidermis is a stratified epithelium, which forms a barrier to maintain the internal milieu in metazoans. Being the outermost tissue, growth of the epidermis has to be strictly coordinated with the growth of the embryo. The key parameters that determine tissue growth are cell number and cell size. So far, it has remained unclear how the size of epidermal cells is maintained and whether it contributes towards epidermal homeostasis. We have used genetic analysis in combination with cellular imaging to show that zebrafish goosepimples/myosin Vb regulates plasma membrane homeostasis and is involved in maintenance of cell size in the periderm, the outermost epidermal layer. The decrease in peridermal cell size in Myosin Vb deficient embryos is compensated by an increase in cell number whereas decrease in cell number results in the expansion of peridermal cells, which requires myosin Vb (myoVb) function. Inhibition of cell proliferation as well as cell size expansion results in increased lethality in larval stages suggesting that this two-way compensatory mechanism is essential for growing larvae. Our analyses unravel the importance of Myosin Vb dependent cell size regulation in epidermal homeostasis and demonstrate that the epidermis has the ability to maintain a dynamic balance between cell size and cell number.


Asunto(s)
Membrana Celular/metabolismo , Células Epidérmicas , Epidermis/metabolismo , Homeostasis , Miosina Tipo V/metabolismo , Animales , Recuento de Células , Tamaño de la Célula , Embrión no Mamífero , Endocitosis , Endosomas/metabolismo , Epidermis/embriología , Sitios Genéticos , Lisosomas/metabolismo , Modelos Biológicos , Mutación , Miosina Tipo V/deficiencia , Miosina Tipo V/genética , Fenotipo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...