Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Transl Vis Sci Technol ; 12(8): 5, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37555738

RESUMEN

Purpose: Carboxymethylcellulose is an artificial tear ingredient known to decrease gut microbiome diversity when ingested. This study examines the effect of carboxymethylcellulose on ocular surface microbiome diversity and composition. Methods: Healthy adult participants without significant ophthalmic disease or concurrent carboxymethylcellulose artificial tear use were allocated randomly to take carboxymethylcellulose or control polyethylene glycol artificial tears for seven days. Conjunctival swabs were collected before and after artificial tear treatment. This trial is registered at clinicaltrials.gov (NCT05292755). Primary outcomes included abundance of bacterial taxa and microbiome diversity as measured by the Chao-1 richness estimate, Shannon's phylogenetic diversity index, and UniFrac analysis. Secondary outcomes included Ocular Surface Disease Index scores and artificial tear compliance. Results: Of the 80 enrolled participants, 66 completed the trial. Neither intervention affected Chao-1 richness (analysis of variance [ANOVA], P = 0.231) or Shannon's diversity index (ANOVA, P = 0.224). Microbiome samples did not separate by time point (permutation multivariate analysis of variance [PERMANOVA], P = 0.223) or intervention group (PERMANOVA, P = 0.668). LEfSe taxonomic analysis revealed that carboxymethylcellulose depleted several taxa including Bacteroides and Lachnoclostridium, but enriched Enterobacteriaceae, Citrobacter, and Gordonia. Both interventions decreased OSDI scores (Wilcoxon signed rank test, P < 0.05), but there was no significant difference between interventions (Mann-Whitney U, P = 0.54). Conclusions: Carboxymethylcellulose artificial tears increased Actinobacteriota but decreased Bacteroides and Firmicutes bacteria. Carboxymethylcellulose artificial tears do not affect ocular surface microbiome diversity and are not significantly more effective than polyethylene glycol artificial tears for dry eye treatment. Translational Relevance: The 16S microbiome analysis has revealed small changes in the ocular surface microbiome associated with artificial tear use.


Asunto(s)
Gotas Lubricantes para Ojos , Microbiota , Adulto , Humanos , Carboximetilcelulosa de Sodio , Filogenia , Polietilenglicoles
2.
Sci Rep ; 13(1): 3755, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882425

RESUMEN

Smoking accelerates periodontal disease and alters the subgingival microbiome. However, the relationship between smoking-associated subgingival dysbiosis and progression of periodontal disease is not well understood. Here, we sampled 233 subgingival sites longitudinally from 8 smokers and 9 non-smokers over 6-12 months, analyzing 804 subgingival plaque samples using 16 rRNA sequencing. At equal probing depths, the microbial richness and diversity of the subgingival microbiome was higher in smokers compared to non-smokers, but these differences decreased as probing depths increased. The overall subgingival microbiome of smokers differed significantly from non-smokers at equal probing depths, which was characterized by colonization of novel minority microbes and a shift in abundant members of the microbiome to resemble periodontally diseased communities enriched with pathogenic bacteria. Temporal analysis showed that microbiome in shallow sites were less stable than deeper sites, but temporal stability of the microbiome was not significantly affected by smoking status or scaling and root planing. We identified 7 taxa-Olsenella sp., Streptococcus cristatus, Streptococcus pneumoniae, Streptococcus parasanguinis, Prevotella sp., Alloprevotella sp., and a Bacteroidales sp. that were significantly associated with progression of periodontal disease. Taken together, these results suggest that subgingival dysbiosis in smokers precedes clinical signs of periodontal disease, and support the hypothesis that smoking accelerates subgingival dysbiosis to facilitate periodontal disease progression.


Asunto(s)
Disbiosis , Enfermedades Periodontales , Humanos , Fumar/efectos adversos , Fumar Tabaco , Fumadores , Bacteroidetes
3.
BMC Oral Health ; 22(1): 461, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36324127

RESUMEN

BACKGROUND: This single-center, randomized controlled trial aimed to determine the effectiveness of a novel, biofilm-disrupting, mouth rinse that combines Cetylpyridinium chloride (CPC) and essential oils in preventing re-accumulation of supragingival plaque and supragingival microbiome in patients with gingivitis after dental prophylaxis. METHODS: One hundred eighteen participants were randomly assigned in a 1:1 ratio to receive twice-daily test mouth rinse (59) or carrier rinse control (59) for 12 weeks after dental prophylaxis. RESULTS: In a per-protocol analysis that included patients who completed the intervention, the treatment group (39) had significantly lower supragingival plaque scores at 6 and 12 weeks compared to the control group (41; p = 0.022). Both groups showed similar improvement in gingivitis score, but neither group had improvement in bleeding score or probing depth. Thirty-eight (29%) patients did not complete the study due to loss of follow-up (17) or early discontinuation of the assigned intervention (21). Microbiome sequencing showed that the treatment rinse significantly depleted abundant and prevalent members of the supragingival plaque microbiome consortium. CONCLUSIONS: Among patients with gingivitis, the novel mouth rinse significantly reduced re-accumulation of supragingival plaque following dental prophylaxis by depleting supragingival plaque microbiome. However, long-term adherence to the rinse may be limited by adverse effects ( ClinicalTrials.gov number, NCT03154021).


Asunto(s)
Antiinfecciosos Locales , Placa Dental , Gingivitis , Humanos , Antisépticos Bucales/uso terapéutico , Placa Dental/prevención & control , Placa Dental/tratamiento farmacológico , Antiinfecciosos Locales/uso terapéutico , Método Doble Ciego , Gingivitis/prevención & control , Gingivitis/tratamiento farmacológico , Índice de Placa Dental
4.
Sci Rep ; 11(1): 23987, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34907334

RESUMEN

The subgingival microbiome is one of the most stable microbial ecosystems in the human body. Alterations in the subgingival microbiome have been associated with periodontal disease, but their variations over time and between different subgingival sites in periodontally healthy individuals have not been well described. We performed extensive, longitudinal sampling of the subgingival microbiome from five periodontally healthy individuals to define baseline spatial and temporal variations. A total of 251 subgingival samples from 5 subjects were collected over 6-12 months and deep sequenced. The overall microbial diversity and composition differed significantly between individuals. Within each individual, we observed considerable differences in microbiome composition between different subgingival sites. However, for a given site, the microbiome was remarkably stable over time, and this stability was associated with increased microbial diversity but was inversely correlated with the enrichment of putative periodontal pathogens. In contrast to microbiome composition, the predicted functional metagenome was similar across space and time, suggesting that periodontal health is associated with shared gene functions encoded by different microbiome consortia that are individualized. To our knowledge, this is one of the most detailed longitudinal analysis of the healthy subgingival microbiome to date that examined the longitudinal variability of different subgingival sites within individuals. These results suggest that a single measurement of the healthy subgingival microbiome at a given site can provide long term information of the microbial composition and functional potential, but sampling of each site is necessary to define the composition and community structure at individual subgingival sites.


Asunto(s)
Encía/microbiología , Metagenoma , Microbiota/genética , Adulto , Femenino , Humanos , Masculino
5.
J Hepatol ; 75(4): 820-828, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34023351

RESUMEN

BACKGROUND & AIMS: Retreatment with glecaprevir/pibrentasvir (G/P) resulted in a rate of sustained virologic response 12 weeks after treatment completion (SVR12) of >90% in HCV genotype 1 (GT1) patients who previously failed a regimen of sofosbuvir plus an NS5A inhibitor (NS5Ai). This study investigated the prevalence and impact of baseline NS3 and NS5A resistance-associated substitutions (RASs) on the efficacy of G/P in prior GT1 sofosbuvir+NS5Ai failures and the persistence of treatment-emergent RASs. METHODS: Longitudinal samples from 177 patients enrolled in a phase IIIb, randomized pragmatic clinical trial were analyzed. Patients without cirrhosis were randomized to 12 or 16 weeks of G/P, and patients with compensated cirrhosis were randomized to G/P and ribavirin for 12 weeks or G/P for 16 weeks. Linkage of RAS was identified using Primer-ID next-generation sequencing at a 15% cut-off. RESULTS: Of 177 patients, 169 (95.5%) were PI-naïve. All 33 GT1b-infected patients achieved SVR12. In GT1a-infected patients, baseline NS5A RASs were prevalent (74.5%, 105/141) but NS3 RASs were uncommon. Baseline NS3 RASs had no impact on G/P efficacy and patients with baseline NS5A RASs showed a numerically but not statistically significantly lower SVR12 rate compared to those without NS5A RASs (89% vs. 97%). SVR12 was achieved in 34 of 35 (97%) patients without NS5A baseline substitution, and 53 of 57 (93%), 35 of 40 (88%), 5 of 8 (63%) with single, double-linked, and triple-linked NS5A substitutions, respectively. Among 13 patients with virologic failure, 4 acquired treatment-emergent NS3 RASs and 10 acquired NS5A RASs. CONCLUSION: Baseline NS5A RASs were highly prevalent. The presence of an increasing number of linked NS5A RASs in GT1a showed a trend in decreasing SVR12 rates, although no specific NS5A RASs or their linkage pattern were associated with lower SVR12 rates. LAY SUMMARY: Direct-acting antivirals have revolutionized the treatment of chronic hepatitis C infection, but treatment failure occurs in some patients. Retreatment of patients who previously failed a regimen consisting of sofosbuvir and an NS5A inhibitor with a regimen of glecaprevir and pibrentasvir (G/P) is >90% effective. Herein, we analyzed samples from these patients and showed that retreatment efficacy with G/P is lower in patients with double- or triple-linked NS5A resistance mutations than in patients with single or no NS5A resistance mutations. CLINICAL TRIAL NUMBER: NCT03092375.


Asunto(s)
Bencimidazoles/farmacología , Resistencia a Medicamentos/inmunología , Pirrolidinas/farmacología , Quinoxalinas/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Sofosbuvir/metabolismo , Sulfonamidas/farmacología , Proteínas no Estructurales Virales/antagonistas & inhibidores , Adulto , Antivirales/administración & dosificación , Antivirales/metabolismo , Bencimidazoles/uso terapéutico , Combinación de Medicamentos , Femenino , Hepatitis C/tratamiento farmacológico , Hepatitis C/epidemiología , Hepatitis C/fisiopatología , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Pirrolidinas/uso terapéutico , Quinoxalinas/administración & dosificación , Quinoxalinas/uso terapéutico , ARN Polimerasa Dependiente del ARN/farmacología , Sofosbuvir/administración & dosificación , Sulfonamidas/uso terapéutico , Estados Unidos/epidemiología , Proteínas no Estructurales Virales/farmacología
6.
BMC Oral Health ; 21(1): 248, 2021 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-33964928

RESUMEN

BACKGROUND: Subgingival microbiome in disease-associated subgingival sites is known to be dysbiotic and significantly altered. In patients with rheumatoid arthritis (RA), the extent of dysbiosis in disease- and health-associated subgingival sites is not clear. METHODS: 8 RA and 10 non-RA subjects were recruited for this pilot study. All subjects received full oral examination and underwent collection of subgingival plaque samples from both shallow (periodontal health-associated, probing depth ≤ 3mm) and deep subgingival sites (periodontal disease-associated, probing depth ≥ 4 mm). RA subjects also had rheumatological evaluation. Plaque community profiles were analyzed using 16 S rRNA sequencing. RESULTS: The phylogenetic diversity of microbial communities in both RA and non-RA controls was significantly higher in deep subgingival sites compared to shallow sites (p = 0.022), and the overall subgingival microbiome clustered primarily according to probing depth (i.e. shallow versus deep sites), and not separated by RA status. While a large number of differentially abundant taxa and gene functions was observed between deep and shallow sites as expected in non-RA controls, we found very few differentially abundant taxa and gene functions between deep and shallow sites in RA subjects. In addition, compared to non-RA controls, the UniFrac distances between deep and shallow sites in RA subjects were smaller, suggesting increased similarity between deep and shallow subgingival microbiome in RA. Streptococcus parasanguinis and Actinomyces meyeri were overabundant in RA subjects, while Gemella morbillorum, Kingella denitrificans, Prevotella melaninogenica and Leptotrichia spp. were more abundant in non-RA subjects. CONCLUSIONS: The aggregate subgingival microbiome was not significantly different between individuals with and without rheumatoid arthritis. Although the differences in the overall subgingival microbiome was driven primarily by probing depth, in contrast to the substantial microbiome differences typically seen between deep and shallow sites in non-RA patients, the microbiome of deep and shallow sites in RA patients were more similar to each other. These results suggest that factors associated with RA may modulate the ecology of subgingival microbiome and its relationship to periodontal disease, the basis of which remains unknown but warrants further investigation.


Asunto(s)
Artritis Reumatoide , Microbiota , Actinomycetaceae , Gemella , Humanos , Kingella , Filogenia , Proyectos Piloto , Streptococcus
7.
Sci Rep ; 10(1): 8185, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424187

RESUMEN

HIV drug resistance is a major threat to achieving long-term viral suppression in HIV-positive individuals. Drug resistant HIV variants, including minority variants, can compromise response to antiretroviral therapy. Many studies have investigated the clinical relevance of drug resistant minority variants, but the level at which minority variants become clinically relevant remains unclear. A combination of Primer-ID and deep sequencing is a promising approach that may quantify minority variants more accurately compared to standard deep sequencing. However, most studies that used the Primer-ID method have analyzed clinical samples directly. Thus, its sensitivity and quantitative accuracy have not been adequately validated using known controls. Here, we constructed defined proportions of artificial RNA and virus quasispecies and measured their relative proportions using the Primer-ID based, quantitative single-variant sequencing (qSVS) assay. Our results showed that minority variants present at 1% of quasispecies were detected reproducibly with minimal variations between technical replicates. In addition, the measured frequencies were comparable to the expected frequencies. These data validate the accuracy and reproducibility of the qSVS assay in quantifying authentic HIV minority variants, and support the use of this approach to examine the impacts of minority HIV variants on virologic response and clinical outcome.


Asunto(s)
VIH-1/genética , Límite de Detección , Polimorfismo de Nucleótido Simple , Plásmidos/genética
8.
Breast Cancer Res ; 19(1): 122, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29145865

RESUMEN

BACKGROUND: Proper repair and restart of stressed replication forks requires intact homologous recombination (HR). HR at stressed replication forks can be initiated by the 5' endonuclease EEPD1, which cleaves the stalled replication fork. Inherited or acquired defects in HR, such as mutations in breast cancer susceptibility protein-1 (BRCA1) or BRCA2, predispose to cancer, including breast and ovarian cancers. In order for these HR-deficient tumor cells to proliferate, they become addicted to a bypass replication fork repair pathway mediated by radiation repair protein 52 (RAD52). Depleting RAD52 can cause synthetic lethality in BRCA1/2 mutant cancers by an unknown molecular mechanism. METHODS: We hypothesized that cleavage of stressed replication forks by EEPD1 generates a fork repair intermediate that is toxic when HR-deficient cells cannot complete repair with the RAD52 bypass pathway. To test this hypothesis, we applied cell survival assays, immunofluorescence staining, DNA fiber and western blot analyses to look at the correlation between cell survival and genome integrity in control, EEPD1, RAD52 and EEPD1/RAD52 co-depletion BRCA1-deficient breast cancer cells. RESULTS: Our data show that depletion of EEPD1 suppresses synthetic lethality, genome instability, mitotic catastrophe, and hypersensitivity to stress of replication of RAD52-depleted, BRCA1 mutant breast cancer cells. Without HR and the RAD52-dependent backup pathway, the BRCA1 mutant cancer cells depleted of EEPD1 skew to the alternative non-homologous end-joining DNA repair pathway for survival. CONCLUSION: This study indicates that the mechanism of synthetic lethality in RAD52-depleted BRCA1 mutant cancer cells depends on the endonuclease EEPD1. The data imply that EEPD1 cleavage of stressed replication forks may result in a toxic intermediate when replication fork repair cannot be completed.


Asunto(s)
Proteína BRCA1/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Endodesoxirribonucleasas/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Mutaciones Letales Sintéticas , Proteína BRCA1/deficiencia , Línea Celular Tumoral , Supervivencia Celular/genética , Roturas del ADN , Reparación del ADN , Replicación del ADN , Femenino , Técnicas de Inactivación de Genes , Inestabilidad Genómica , Recombinación Homóloga , Humanos , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo
9.
Cancer Chemother Pharmacol ; 80(4): 861-867, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28756516

RESUMEN

Malignant pleural mesotheliomas (MPM) are most often surgically unresectable, and they respond poorly to current chemotherapy and radiation therapy. Between 23 and 64% of malignant pleural mesothelioma have somatic inactivating mutations in the BAP1 gene. BAP1 is a homologous recombination (HR) DNA repair component found in the BRCA1/BARD1 complex. Similar to BRCA1/2 deficient cancers, mutation in the BAP1 gene leads to a deficient HR pathway and increases the reliance on other DNA repair pathways. We hypothesized that BAP1-mutant MPM would require PARP1 for survival, similar to the BRCA1/2 mutant breast and ovarian cancers. Therefore, we used the clinical PARP1 inhibitors niraparib and olaparib to assess whether they could induce synthetic lethality in MPM. Surprisingly, we found that all MPM cell lines examined, regardless of BAP1 status, were addicted to PARP1-mediated DNA repair for survival. We found that niraparib and olaparib exposure markedly decreased clonal survival in multiple MPM cell lines, with and without BAP1 mutations. This clonal cell death may be due to the extensive replication fork collapse and genomic instability that PARP1 inhibition induces in MPM cells. The requirement of MPM cells for PARP1 suggests that they may generally arise from defects in HR DNA repair. More importantly, these data demonstrate that the PARP1 inhibitors could be effective in the treatment of MPM, for which little effective therapy exists.


Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Mesotelioma/tratamiento farmacológico , Neoplasias Pleurales/tratamiento farmacológico , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Línea Celular Tumoral , Células Clonales/citología , Reparación del ADN/genética , Humanos , Indazoles/farmacología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mesotelioma/genética , Mesotelioma/patología , Mesotelioma Maligno , Mutación , Ftalazinas/farmacología , Piperazinas/farmacología , Piperidinas/farmacología , Neoplasias Pleurales/genética , Neoplasias Pleurales/patología , Mutaciones Letales Sintéticas
10.
J Biol Chem ; 292(7): 2795-2804, 2017 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-28049724

RESUMEN

Replication is not as continuous as once thought, with DNA damage frequently stalling replication forks. Aberrant repair of stressed replication forks can result in cell death or genome instability and resulting transformation to malignancy. Stressed replication forks are most commonly repaired via homologous recombination (HR), which begins with 5' end resection, mediated by exonuclease complexes, one of which contains Exo1. However, Exo1 requires free 5'-DNA ends upon which to act, and these are not commonly present in non-reversed stalled replication forks. To generate a free 5' end, stalled replication forks must therefore be cleaved. Although several candidate endonucleases have been implicated in cleavage of stalled replication forks to permit end resection, the identity of such an endonuclease remains elusive. Here we show that the 5'-endonuclease EEPD1 cleaves replication forks at the junction between the lagging parental strand and the unreplicated DNA parental double strands. This cleavage creates the structure that Exo1 requires for 5' end resection and HR initiation. We observed that EEPD1 and Exo1 interact constitutively, and Exo1 repairs stalled replication forks poorly without EEPD1. Thus, EEPD1 performs a gatekeeper function for replication fork repair by mediating the fork cleavage that permits initiation of HR-mediated repair and restart of stressed forks.


Asunto(s)
Reparación del ADN , Replicación del ADN , Endodesoxirribonucleasas/metabolismo , Células HEK293 , Humanos
11.
Cell Microbiol ; 15(3): 353-367, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23083060

RESUMEN

The intracellular pathogen Shigella flexneri forms membrane protrusions to spread from cell to cell. As protrusions form, myosin-X (Myo10) localizes to Shigella. Electron micrographs of immunogold-labelled Shigella-infected HeLa cells reveal that Myo10 concentrates at the bases and along the sides of bacteria within membrane protrusions. Time-lapse video microscopy shows that a full-length Myo10 GFP-construct cycles along the sides of Shigella within the membrane protrusions as these structures progressively lengthen. RNAi knock-down of Myo10 is associated with shorter protrusions with thicker stalks, and causes a >80% decrease in confluent cell plaque formation. Myo10 also concentrates in membrane protrusions formed by another intracellular bacteria, Listeria, and knock-down of Myo10 also impairs Listeria plaque formation. In Cos7 cells (contain low concentrations of Myo10), the expression of full-length Myo10 nearly doubles Shigella-induced protrusion length, and lengthening requires the head domain, as well as the tail-PH domain, but not the FERM domain. The GFP-Myo10-HMM domain localizes to the sides of Shigella within membrane protrusions and the GFP-Myo10-PH domain localizes to host cell membranes. We conclude thatMyo10 generates the force to enhance bacterial-induced protrusions by binding its head region to actin filaments and its PH tail domain to the peripheral membrane.


Asunto(s)
Interacciones Huésped-Patógeno , Miosinas/metabolismo , Shigella flexneri/fisiología , Animales , Células COS , Membrana Celular/metabolismo , Membrana Celular/microbiología , Chlorocebus aethiops , Células HeLa , Humanos , Listeria/patogenicidad , Microscopía Inmunoelectrónica , Microscopía por Video
12.
BMC Immunol ; 13: 33, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22747600

RESUMEN

BACKGROUND: Anthrax lethal toxin (LT), produced by the Gram-positive bacterium Bacillus anthracis, is a highly effective zinc dependent metalloprotease that cleaves the N-terminus of mitogen-activated protein kinase kinases (MAPKK or MEKs) and is known to play a role in impairing the host immune system during an inhalation anthrax infection. Here, we present the transcriptional responses of LT treated human monocytes in order to further elucidate the mechanisms of LT inhibition on the host immune system. RESULTS: Western Blot analysis demonstrated cleavage of endogenous MEK1 and MEK3 when human monocytes were treated with 500 ng/mL LT for four hours, proving their susceptibility to anthrax lethal toxin. Furthermore, staining with annexin V and propidium iodide revealed that LT treatment did not induce human peripheral monocyte apoptosis or necrosis. Using Affymetrix Human Genome U133 Plus 2.0 Arrays, we identified over 820 probe sets differentially regulated after LT treatment at the p <0.001 significance level, interrupting the normal transduction of over 60 known pathways. As expected, the MAPKK signaling pathway was most drastically affected by LT, but numerous genes outside the well-recognized pathways were also influenced by LT including the IL-18 signaling pathway, Toll-like receptor pathway and the IFN alpha signaling pathway. Multiple genes involved in actin regulation, signal transduction, transcriptional regulation and cytokine signaling were identified after treatment with anthrax LT. CONCLUSION: We conclude LT directly targets human peripheral monocytes and causes multiple aberrant gene responses that would be expected to be associated with defects in human monocyte's normal signaling transduction pathways and function. This study provides further insights into the mechanisms associated with the host immune system collapse during an anthrax infection, and suggests that anthrax LT may have additional downstream targets outside the well-known MAPK pathway.


Asunto(s)
Carbunco/inmunología , Antígenos Bacterianos/inmunología , Bacillus anthracis/inmunología , Toxinas Bacterianas/inmunología , Leucocitos Mononucleares/inmunología , Activación Transcripcional/inmunología , Actinas/metabolismo , Células Cultivadas , Humanos , Interferón-alfa/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , MAP Quinasa Quinasa 1/inmunología , MAP Quinasa Quinasa 1/metabolismo , MAP Quinasa Quinasa 3/inmunología , MAP Quinasa Quinasa 3/metabolismo , Análisis por Micromatrices , Transducción de Señal/inmunología , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
13.
J Infect Dis ; 205(3): 453-7, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22158563

RESUMEN

Hemorrhage is a prominent clinical manifestation of systemic anthrax. Therefore, we have examined the effects of anthrax lethal and edema toxins on human platelets. We find that anthrax lethal toxin fails to cleave its target, mitogen-activated protein kinase 1, and anthrax edema toxin fails to increase intracellular cyclic adenosine monophosphate. Surface expression of toxin receptors tumor endothelial marker 8 and capillary morphogenesis gene 2, as well as coreceptor low density lipoprotein receptor-related protein 6 (LRP6), are markedly reduced, preventing toxin binding to platelets. Our studies suggest that the hemorrhagic clinical manifestations of systemic anthrax are unlikely to be caused by the direct binding and entry of anthrax toxins into human platelets.


Asunto(s)
Antígenos Bacterianos/toxicidad , Toxinas Bacterianas/toxicidad , Plaquetas/efectos de los fármacos , Plaquetas/fisiología , Animales , Antígenos Bacterianos/metabolismo , Toxinas Bacterianas/metabolismo , AMP Cíclico/metabolismo , Perfilación de la Expresión Génica , Experimentación Humana , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteínas de la Membrana/biosíntesis , Ratones , Proteínas de Microfilamentos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteínas de Neoplasias/biosíntesis , Proteolisis , Receptores de Superficie Celular/biosíntesis , Receptores de Péptidos
14.
EMBO J ; 26(9): 2240-50, 2007 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-17446863

RESUMEN

Inhalation of anthrax causes fatal bacteremia, indicating a meager host immune response. We previously showed that anthrax lethal toxin (LT) paralyzes neutrophils, a major component of innate immunity. Here, we have found that LT also inhibits actin-based motility of the intracellular pathogen Listeria monocytogenes. LT inhibition of actin assembly is mediated by blockade of Hsp27 phosphorylation, and can be reproduced by treating cells with the p38 mitogen-activated protein (MAP) kinase inhibitor SB203580. Nonphosphorylated Hsp27 inhibits Listeria actin-based motility in cell extracts, and binds to and sequesters purified actin monomers. Phosphorylation of Hsp27 reverses these effects. RNA interference knockdown of Hsp27 blocks LT inhibition of Listeria actin-based motility. Rescue with wild-type Hsp27 accelerates Listeria speed in knockdown cells, whereas introduction of Hsp27 mutants incapable of phosphorylation or dephosphorylation causes slowing down. We propose that Hsp27 facilitates actin-based motility through a phosphorylation cycle that shuttles actin monomers to regions of new actin filament assembly. Our findings provide a previously unappreciated mechanism for LT virulence, and emphasize a central role for p38 MAP kinase-mediated phosphorylation of Hsp27 in actin-based motility and innate immunity.


Asunto(s)
Actinas/metabolismo , Antígenos Bacterianos/fisiología , Proteínas de Choque Térmico/metabolismo , Listeria monocytogenes/fisiología , Proteínas de Neoplasias/metabolismo , Neutrófilos/fisiología , Citoesqueleto de Actina/fisiología , Animales , Antígenos Bacterianos/toxicidad , Toxinas Bacterianas/toxicidad , Transporte Biológico Activo , Encéfalo/microbiología , Polaridad Celular , Proteínas de Choque Térmico HSP27 , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Imidazoles/farmacología , Inmunidad Innata , Técnicas In Vitro , Listeria monocytogenes/efectos de los fármacos , Chaperonas Moleculares , Mutación , Proteínas de Neoplasias/genética , Neutrófilos/efectos de los fármacos , Neutrófilos/microbiología , Fosforilación , Piridinas/farmacología , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
15.
EMBO J ; 25(19): 4458-67, 2006 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-16977317

RESUMEN

CapG is the only member of the gelsolin family unable to sever actin filaments. Changing amino acids 84-91 (severing domain) and 124-137 (WH2-containing segment) simultaneously to the sequences of gelsolin results in a mutant, CapG-sev, capable of severing actin filaments. The gain of severing function does not alter actin filament capping, but is accompanied by a higher affinity for monomeric actin, and the capacity to bind and sequester two actin monomers. Analysis of CapG-sev crystal structure suggests a more loosely folded inactive conformation than gelsolin, with a shorter S1-S2 latch. Calcium binding to S1 opens this latch and S1 becomes separated from a closely interfaced S2-S3 complex by an extended arm consisting of amino acids 118-137. Modeling with F-actin predicts that the length of this WH2-containing arm is critical for severing function, and the addition of a single amino acid (alanine or histidine) eliminates CapG-sev severing activity, confirming this prediction. We conclude that efficient severing utilizes two actin monomer-binding sites, and that the length of the WH2-containing segment is a critical functional determinant for severing.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Gelsolina/química , Gelsolina/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Citoesqueleto de Actina/química , Actinas/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Cristalografía por Rayos X , Gelsolina/genética , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Secundaria de Proteína , Conejos , Relación Estructura-Actividad
16.
J Biol Chem ; 280(12): 11379-86, 2005 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15642729

RESUMEN

Motile nonmuscle cells concentrate phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) and phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) in areas of new actin filament assembly. There is great interest in assessing the in vivo functional significance of these phosphoinositides, and we have used Listeria monocytogenes to explore the contribution of PtdIns(3,4,5)P3 and PtdIns(4,5)P2 to its actin-based motility. In Listeria-infected PtK2 cells Akt-pleckstrin homology (PH)-green fluorescent protein (GFP) and phospholipase C delta (PLC delta)-PH-GFP both first concentrate at the front of motile Listeria, subsequently surrounding the bacterium and then concentrating in the actin filament tail. Surprisingly, Listeria ActA mutant strains lacking the putative phosphoinositide binding site are also able to concentrate these probes. Reduction of available PtdIns(3,4,5)P3 by expression of Akt-PH-GFP and available PtdIns(4,5)P2 by expression of PLC delta-PH-GFP both significantly slow Listeria actin-based movement. Treatment of cells with the PI 3-kinase inhibitor, LY294002, dissociates Akt-PH but not PLC delta-PH, from the bacterial surface and cell membranes, and results in near complete inhibition of Listeria actin-based motility and filopod formation. Removal of LY294002 results in rapid and full recovery of Akt-PH localization, Listeria actin-based motility, and filopod formation. These findings suggest that PtdIns(4,5)P2 is concentrated at the surface of Listeria and serves as the substrate for PtdIns(3,4,5)P3 production, indicating a central role for PI 3-kinases in Listeria intracellular actin-based motility and filopod formation.


Asunto(s)
Actinas/fisiología , Listeria monocytogenes/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Animales , Sitios de Unión , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Línea Celular , Cromonas/farmacología , Dipodomys , Perros , Isoenzimas/fisiología , Morfolinas/farmacología , Fosfatidilinositol 4,5-Difosfato/fisiología , Fosfatos de Fosfatidilinositol/fisiología , Fosfolipasa C delta , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas c-akt , Tiazoles/farmacología , Tiazolidinas , Fosfolipasas de Tipo C/fisiología
17.
J Biol Chem ; 279(48): 50566-79, 2004 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-15364927

RESUMEN

In normal cells p53 activity is tightly controlled and MDM2 is a known negative regulator. Here we show that via its acidic domain, Daxx binds to the COOH-terminal domain of p53, whose positive charges are critical for this interaction, as Lys to Arg mutations preserved, but Lys to Ala or Ser to Glu mutations abolished Daxx-p53 interaction. These results thus implicate acetylation and phosphorylation of p53 in regulating its binding to Daxx. Interestingly, whereas Daxx did not bind to p53 in cells as assessed by immunoprecipitation, MDM2 expression restored p53-Daxx interaction, and this correlated with deacetylation of p53. In p53/MDM2-null mouse embryonic fibroblasts (DKO MEF), Daxx repressed p53 target promoters whose p53-binding elements were required for the repression. Coexpression of Daxx and MDM2 led to further repression. p53 expression in DKO MEF induced apoptosis and Daxx expression relieved this effect. Similarly, in HCT116 cells, Daxx conferred striking resistance to 5-fluorouracil-induced apoptosis. As p53 is required for 5-fluorouracil-induced cell death, our data show that Daxx can suppress cell death induced by p53 overexpression and p53-dependent stress response. Collectively, our data reveal Daxx as a novel negative regulator of p53. Importantly, posttranslational modifications of p53 inhibit Daxx-p53 interaction, thereby relieving negative regulation of p53 by Daxx.


Asunto(s)
Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Apoptosis/fisiología , Proteínas Co-Represoras , Regulación hacia Abajo , Humanos , Ratones , Chaperonas Moleculares , Proteínas Proto-Oncogénicas c-mdm2 , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...