Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Pain ; 19: 17448069231183902, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37285551

RESUMEN

Background: Opioids are efficacious and safe analgesic drugs in short-term use for acute pain but chronic use can lead to tolerance and dependence. Opioid-induced microglial activation may contribute to the development of tolerance and this process may differ between males and females. A link is suggested between this microglial activation and inflammation, disturbances of circadian rhythms, and neurotoxic effects. We set out to further delineate the effects of chronic morphine on pain behaviour, microglial and neuronal staining, and the transcriptome of spinal microglia, to better understand the role of microglia in the consequences of long-term high-dose opioid administration. Experimental Approach: In two experiments, we administered increasing subcutaneous doses of morphine hydrochloride or saline to male and female rats. Thermal nociception was assessed with the tail flick and hot plate tests. In Experiment I, spinal cord (SC) samples were prepared for immunohistochemical staining for microglial and neuronal markers. In Experiment II, the transcriptome of microglia from the lumbar SC was analysed. Key Results: Female and male rats had similar antinociceptive responses to morphine and developed similar antinociceptive tolerance to thermal stimuli following chronic increasing high doses of s.c. morphine. The area of microglial IBA1-staining in SC decreased after 2 weeks of morphine administration in both sexes. Following morphine treatment, the differentially expressed genes identified in the microglial transcriptome included ones related to the circadian rhythm, apoptosis, and immune system processes. Conclusions: Female and male rats showed similar pain behaviour following chronic high doses of morphine. This was associated with decreased staining of spinal microglia, suggesting either decreased activation or apoptosis. High-dose morphine administration also associated with several changes in gene expression in SC microglia, e.g., those related to the circadian rhythm (Per2, Per3, Dbp). These changes should be considered in the clinical consequences of long-term high-dose administration of opioids.


Asunto(s)
Analgésicos Opioides , Morfina , Ratas , Masculino , Femenino , Animales , Morfina/uso terapéutico , Analgésicos Opioides/farmacología , Analgésicos Opioides/uso terapéutico , Microglía , Transcriptoma/genética , Analgésicos/farmacología , Dolor/metabolismo , Médula Espinal/metabolismo
2.
Front Cell Neurosci ; 15: 679034, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220453

RESUMEN

Well-known effects of neurotrophic factors are related to supporting the survival and functioning of various neuronal populations in the body. However, these proteins seem to also play less well-documented roles in glial cells, thus, influencing neuroinflammation. This article summarizes available data on the effects of glial cell line derived neurotrophic factor (GDNF) family ligands (GFLs), proteins providing trophic support to dopaminergic, sensory, motor and many other neuronal populations, in non-neuronal cells contributing to the development and maintenance of neuropathic pain. The paper also contains our own limited data describing the effects of small molecules targeting GFL receptors on the expression of the satellite glial marker IBA1 in dorsal root ganglia of rats with surgery- and diabetes-induced neuropathy. In our experiments activation of GFLs receptors with either GFLs or small molecule agonists downregulated the expression of IBA1 in this tissue of experimental animals. While it can be a secondary effect due to a supportive role of GFLs in neuronal cells, growing body of evidence indicates that GFL receptors are expressed in glial and peripheral immune system cells. Thus, targeting GFL receptors with either proteins or small molecules may directly suppress the activation of glial and immune system cells and, therefore, reduce neuroinflammation. As neuroinflammation is considered to be an important contributor to the process of neurodegeneration these data further support research efforts to modulate the activity of GFL receptors in order to develop disease-modifying treatments for neurodegenerative disorders and neuropathic pain that target both neuronal and glial cells.

3.
J Parkinsons Dis ; 11(3): 1023-1046, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34024778

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a progressive neurological disorder where loss of dopamine neurons in the substantia nigra and dopamine depletion in the striatum cause characteristic motor symptoms. Currently, no treatment is able to halt the progression of PD. Glial cell line-derived neurotrophic factor (GDNF) rescues degenerating dopamine neurons both in vitro and in animal models of PD. When tested in PD patients, however, the outcomes from intracranial GDNF infusion paradigms have been inconclusive, mainly due to poor pharmacokinetic properties. OBJECTIVE: We have developed drug-like small molecules, named BT compounds that activate signaling through GDNF's receptor, the transmembrane receptor tyrosine kinase RET, both in vitro and in vivo and are able to penetrate through the blood-brain barrier. Here we evaluated the properties of BT44, a second generation RET agonist, in immortalized cells, dopamine neurons and rat 6-hydroxydopamine model of PD. METHODS: We used biochemical, immunohistochemical and behavioral methods to evaluate the effects of BT44 on dopamine system in vitro and in vivo. RESULTS: BT44 selectively activated RET and intracellular pro-survival AKT and MAPK signaling pathways in immortalized cells. In primary midbrain dopamine neurons cultured in serum-deprived conditions, BT44 promoted the survival of the neurons derived from wild-type, but not from RET knockout mice. BT44 also protected cultured wild-type dopamine neurons from MPP+-induced toxicity. In a rat 6-hydroxydopamine model of PD, BT44 reduced motor imbalance and seemed to protect dopaminergic fibers in the striatum. CONCLUSION: BT44 holds potential for further development into a novel, possibly disease-modifying, therapy for PD.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Dopamina , Neuronas Dopaminérgicas/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial , Humanos , Ratones , Fármacos Neuroprotectores/farmacología , Oxidopamina/toxicidad , Proteínas Proto-Oncogénicas c-ret , Ratas , Sustancia Negra/metabolismo
4.
Trends Pharmacol Sci ; 41(12): 909-922, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198924

RESUMEN

Growth factors (GFs) hold considerable promise for disease modification in neurodegenerative disorders because they can protect and restore degenerating neurons and also enhance their functional activity. However, extensive efforts applied to utilize their therapeutic potential in humans have achieved limited success so far. Multiple clinical trials with GFs were performed in Parkinson's disease (PD) patients, in whom diagnostic symptoms of the disease are caused by advanced degeneration of nigrostriatal dopamine neurons (DNs), but the results of these trials are controversial. This review discusses recent developments in the field of therapeutic use of GFs, problems and obstacles related to this use, suggests the ways to overcome these issues, and alternative approaches that can be used to utilize the potential ofGFsin PD management.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Neuronas Dopaminérgicas , Humanos , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico
5.
Int J Mol Sci ; 21(18)2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32911810

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are able to promote the survival of multiple neuronal populations in the body and, therefore, hold considerable promise for disease-modifying treatments of diseases and conditions caused by neurodegeneration. Available data reveal the potential of GFLs for the therapy of Parkinson's disease, neuropathic pain and diseases caused by retinal degeneration but, also, amyotrophic lateral sclerosis and, possibly, Alzheimer's disease. Despite promising data collected in preclinical models, clinical translation of GFLs is yet to be conducted. The main reasons for the limited success of GFLs clinical development are the poor pharmacological characteristics of GFL proteins, such as the inability of GFLs to cross tissue barriers, poor diffusion in tissues, biphasic dose-response and activation of several receptors in the organism in different cell types, along with ethical limitations on patients' selection in clinical trials. The development of small molecules selectively targeting particular GFL receptors with improved pharmacokinetic properties can overcome many of the difficulties and limitations associated with the clinical use of GFL proteins. The current review lists several strategies to target the GFL receptor complex with drug-like molecules, discusses their advantages, provides an overview of available chemical scaffolds and peptides able to activate GFL receptors and describes the effects of these molecules in cultured cells and animal models.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/efectos de los fármacos , Péptidos/farmacología , Animales , Células Cultivadas , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Ligandos , Neuralgia/metabolismo , Neuritas/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/metabolismo , Receptores de Factor de Crecimiento Nervioso/efectos de los fármacos , Receptores de Factor de Crecimiento Nervioso/metabolismo , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología
6.
Int J Mol Sci ; 21(19)2020 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-32993133

RESUMEN

Rearranged during transfection (RET) is the tyrosine kinase receptor that under normal circumstances interacts with ligand at the cell surface and mediates various essential roles in a variety of cellular processes such as proliferation, differentiation, survival, migration, and metabolism. RET plays a pivotal role in the development of both peripheral and central nervous systems. RET is expressed from early stages of embryogenesis and remains expressed throughout all life stages. Mutations either activating or inhibiting RET result in several aggressive diseases, namely cancer and Hirschsprung disease. However, the physiological ligand-dependent activation of RET receptor is important for the survival and maintenance of several neuronal populations, appetite, and weight gain control, thus providing an opportunity for the development of disease-modifying therapeutics against neurodegeneration and obesity. In this review, we describe the structure of RET, its signaling, and its role in both normal conditions as well as in several disorders. We highlight the differences in the signaling and outcomes of constitutive and ligand-induced RET activation. Finally, we review the data on recently developed small molecular weight RET agonists and their potential for the treatment of various diseases.


Asunto(s)
Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Obesidad/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Animales , Enfermedad de Hirschsprung/genética , Enfermedad de Hirschsprung/metabolismo , Enfermedad de Hirschsprung/patología , Humanos , Mutación , Neoplasias/genética , Neoplasias/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Obesidad/genética , Obesidad/patología , Proteínas Proto-Oncogénicas c-ret/análisis , Proteínas Proto-Oncogénicas c-ret/genética , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Retinitis Pigmentosa/patología
7.
Mol Pain ; 16: 1744806920950866, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32811276

RESUMEN

The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) alleviate symptoms of experimental neuropathy, protect and stimulate regeneration of sensory neurons in animal models of neuropathic pain, and restore their functional activity. However, clinical development of GFL proteins is complicated by their poor pharmacokinetic properties and multiple effects mediated by several receptors. Previously, we have identified a small molecule that selectively activates the major signal transduction unit of the GFL receptor complex, receptor tyrosine kinase RET, as an alternative to GFLs, for the treatment of neuropathic pain. We then introduced a series of chemical changes to improve the biological activity of these compounds and tested an optimized compound named BT44 in a panel of biological assays. BT44 efficiently and selectively stimulated the GFL receptor RET and activated the intracellular mitogene-activated protein kinase/extracellular signal-regulated kinase pathway in immortalized cells. In cultured sensory neurons, BT44 stimulated neurite outgrowth with an efficacy comparable to that of GFLs. BT44 alleviated mechanical hypersensitivity in surgery- and diabetes-induced rat models of neuropathic pain. In addition, BT44 normalized, to a certain degree, the expression of nociception-related neuronal markers which were altered by spinal nerve ligation, the neuropathy model used in this study. Our results suggest that the GFL mimetic BT44 is a promising new lead for the development of novel disease-modifying agents for the treatment of neuropathy and neuropathic pain.


Asunto(s)
Biomimética/métodos , Neuralgia/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-ret/agonistas , Proteínas Proto-Oncogénicas c-ret/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Nervios Espinales/efectos de los fármacos , Animales , Escala de Evaluación de la Conducta , Línea Celular , Neuropatías Diabéticas/tratamiento farmacológico , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factores Neurotróficos Derivados de la Línea Celular Glial , Inmunohistoquímica , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuralgia/metabolismo , Nocicepción/efectos de los fármacos , Fosforilación , Ratas , Ratas Wistar , Células Receptoras Sensoriales/metabolismo , Nervios Espinales/lesiones
8.
Cell Tissue Res ; 382(1): 147-160, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32556722

RESUMEN

Rearranged during transfection (RET), in complex with glial cell line-derived (GDNF) family receptor alpha (GFRα), is the canonical signaling receptor for GDNF family ligands (GFLs) expressed in both central and peripheral parts of the nervous system and also in non-neuronal tissues. RET-dependent signaling elicited by GFLs has an important role in the development, maintenance and survival of dopamine and sensory neurons. Both Parkinson's disease and neuropathic pain are devastating disorders without an available cure, and at the moment are only treated symptomatically. GFLs have been studied extensively in animal models of Parkinson's disease and neuropathic pain with remarkable outcomes. However, clinical trials with recombinant or viral vector-encoded GFL proteins have produced inconclusive results. GFL proteins are not drug-like; they have poor pharmacokinetic properties and activate multiple receptors. Targeting RET and/or GFRα with small molecules may resolve the problems associated with using GFLs as drugs and can result in the development of therapeutics for disease-modifying treatments against Parkinson's disease and neuropathic pain.


Asunto(s)
Neuralgia/terapia , Enfermedad de Parkinson/genética , Proteínas Proto-Oncogénicas c-ret/genética , Animales , Diseño de Fármacos , Humanos , Ratones , Transducción de Señal
9.
Eur J Pharmacol ; 875: 173021, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32112778

RESUMEN

Morphine-3-glucuronide (M3G), the main metabolite of morphine, has been implicated in the development of tolerance and of opioid-induced hyperalgesia, both limiting the analgesic use of morphine. We evaluated the acute and chronic effects of M3G and morphine as well as development of antinociceptive cross-tolerance between morphine and M3G after intrathecal administration and assessed the expression of pain-associated neurotransmitter substance P in the spinal cord. Sprague-Dawley rats received intrathecal M3G or morphine twice daily for 6 days. Nociception and tactile allodynia were measured with von Frey filaments after acute and chronic treatments. Substance P levels in the dorsal horn of the spinal cord were determined by immunohistochemistry after 4-day treatments. Acute morphine caused antinociception as expected, whereas acute M3G caused tactile allodynia, as did both chronic M3G and morphine. Chronic M3G also induced antinociceptive cross-tolerance to morphine. M3G and morphine increased substance P levels similarly in the nociceptive laminae of the spinal cord. This study shows that chronic intrathecal M3G sensitises animals to mechanical stimulation and elevates substance P levels in the nociceptive laminae of the spinal cord. Chronic M3G also induces antinociceptive cross-tolerance to morphine. Thus, chronic M3G exposure might contribute to morphine-induced tolerance and opioid-induced hyperalgesia.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Hiperalgesia/inducido químicamente , Derivados de la Morfina/farmacología , Morfina/farmacología , Nocicepción/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Esquema de Medicación , Tolerancia a Medicamentos , Humanos , Hiperalgesia/diagnóstico , Inyecciones Espinales , Masculino , Morfina/metabolismo , Derivados de la Morfina/metabolismo , Dimensión del Dolor , Ratas , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Sustancia P/metabolismo
10.
Front Neurol Neurosci Res ; 1: 100004, 2020 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-33479704

RESUMEN

Parkinson's disease (PD) is an incurable neurodegenerative disorder affecting up to 10 million people in the world. Diagnostic motor symptoms of PD appear as a result of progressive degeneration and death of nigrostriatal dopamine neurons. Current PD treatments only relieve symptoms without halting the progression of the disease, and their use is complicated by severe adverse effects emerging as the disease progresses. Therefore, there is an urgent need for new therapies for PD management. We developed a small molecule compound, BT13, targeting receptor tyrosine kinase RET. RET is the signalling receptor for a known survival factor for dopamine neurons called glial cell line-derived neurotrophic factor (GDNF). Previously we showed that BT13 prevents the death of cultured dopamine neurons, stimulates dopamine release and activates pro-survival signalling cascades in naïve rodent brain. In the present study, we evaluate the effects of BT13 on motor imbalance and nigrostriatal dopamine neurons in a unilateral 6-hydroxydopamine rat model of PD. We show that BT13 alleviates motor dysfunction in experimental animals. Further studies are needed to make a conclusion whether BT13 can protect the integrity of the nigrostriatal dopamine system since even the positive control, GDNF protein, was unable to produce a clear neuroprotective effect in the model used in the present work. In contrast to GDNF, BT13 is able to cross the blood-brain barrier, which together with the ability to reduce motor symptoms of the disease makes it a valuable lead for further development as a potential disease-modifying agent to treat PD.

11.
Mov Disord ; 35(2): 245-255, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31840869

RESUMEN

BACKGROUND: Motor symptoms of Parkinson's disease (PD) are caused by degeneration and progressive loss of nigrostriatal dopamine neurons. Currently, no cure for this disease is available. Existing drugs alleviate PD symptoms but fail to halt neurodegeneration. Glial cell line-derived neurotrophic factor (GDNF) is able to protect and repair dopamine neurons in vitro and in animal models of PD, but the clinical use of GDNF is complicated by its pharmacokinetic properties. The present study aimed to evaluate the neuronal effects of a blood-brain-barrier penetrating small molecule GDNF receptor Rearranged in Transfection agonist, BT13, in the dopamine system. METHODS: We characterized the ability of BT13 to activate RET in immortalized cells, to support the survival of cultured dopamine neurons, to protect cultured dopamine neurons against neurotoxin-induced cell death, to activate intracellular signaling pathways both in vitro and in vivo, and to regulate dopamine release in the mouse striatum as well as BT13's distribution in the brain. RESULTS: BT13 potently activates RET and downstream signaling cascades such as Extracellular Signal Regulated Kinase and AKT in immortalized cells. It supports the survival of cultured dopamine neurons from wild-type but not from RET-knockout mice. BT13 protects cultured dopamine neurons from 6-Hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+ )-induced cell death only if they express RET. In addition, BT13 is absorbed in the brain, activates intracellular signaling cascades in dopamine neurons both in vitro and in vivo, and also stimulates the release of dopamine in the mouse striatum. CONCLUSION: The GDNF receptor RET agonist BT13 demonstrates the potential for further development of novel disease-modifying treatments against PD. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Ratones , Oxidopamina/farmacología , Enfermedad de Parkinson Secundaria/inducido químicamente , Sustancia Negra/efectos de los fármacos
12.
Curr Neuropharmacol ; 17(3): 268-287, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30182859

RESUMEN

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide, the lifetime risk of developing this disease is 1.5%. Motor diagnostic symptoms of PD are caused by degeneration of nigrostriatal dopamine neurons. There is no cure for PD and current therapy is limited to supportive care that partially alleviates disease signs and symptoms. As diagnostic symptoms of PD result from progressive degeneration of dopamine neurons, drugs restoring these neurons may significantly improve treatment of PD. METHOD: A literature search was performed using the PubMed, Web of Science and Scopus databases to discuss the progress achieved in the development of neuroregenerative agents for PD. Papers published before early 2018 were taken into account. RESULTS: Here, we review several groups of potential agents capable of protecting and restoring dopamine neurons in cultures or animal models of PD including neurotrophic factors and small molecular weight compounds. CONCLUSION: Despite the promising results of in vitro and in vivo experiments, none of the found agents have yet shown conclusive neurorestorative properties in PD patients. Meanwhile, a few promising biologicals and small molecules have been identified. Their further clinical development can eventually give rise to disease-modifying drugs for PD. Thus, intensive research in the field is justified.


Asunto(s)
Regeneración Nerviosa/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Proteínas/uso terapéutico , Animales , Bases de Datos Bibliográficas , Humanos , Peso Molecular , Enfermedad de Parkinson/metabolismo
13.
Front Pharmacol ; 8: 365, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28680400

RESUMEN

Neuropathic pain caused by nerve damage is a common and severe class of chronic pain. Disease-modifying clinical therapies are needed as current treatments typically provide only symptomatic relief; show varying clinical efficacy; and most have significant adverse effects. One approach is targeting either neurotrophic factors or their receptors that normalize sensory neuron function and stimulate regeneration after nerve damage. Two candidate targets are glial cell line-derived neurotrophic factor (GDNF) and artemin (ARTN), as these GDNF family ligands (GFLs) show efficacy in animal models of neuropathic pain (Boucher et al., 2000; Gardell et al., 2003; Wang et al., 2008, 2014). As these protein ligands have poor drug-like properties and are expensive to produce for clinical use, we screened 18,400 drug-like compounds to develop small molecules that act similarly to GFLs (GDNF mimetics). This screening identified BT13 as a compound that selectively targeted GFL receptor RET to activate downstream signaling cascades. BT13 was similar to NGF and ARTN in selectively promoting neurite outgrowth from the peptidergic class of adult sensory neurons in culture, but was opposite to ARTN in causing neurite elongation without affecting initiation. When administered after spinal nerve ligation in a rat model of neuropathic pain, 20 and 25 mg/kg of BT13 decreased mechanical hypersensitivity and normalized expression of sensory neuron markers in dorsal root ganglia. In control rats, BT13 had no effect on baseline mechanical or thermal sensitivity, motor coordination, or weight gain. Thus, small molecule BT13 selectively activates RET and offers opportunities for developing novel disease-modifying medications to treat neuropathic pain.

14.
PLoS One ; 11(5): e0155135, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27167070

RESUMEN

Oxidative reactions that are catalyzed by cytochromes P450 1A (CYP1A) lead to formation of carcinogenic derivatives of arylamines and polycyclic aromatic hydrocarbons (PAHs), such as the widespread environmental pollutant benzo(α)pyrene (BP). These compounds upregulate CYP1A at the transcriptional level via an arylhydrocarbon receptor (AhR)-dependent signaling pathway. Because of the involvement of AhR-dependent genes in chemically induced carcinogenesis, suppression of this signaling pathway could prevent tumor formation and/or progression. Here we show that menadione (a water-soluble analog of vitamin K3) inhibits BP-induced expression and enzymatic activity of both CYP1A1 and CYP1A2 in vivo (in the rat liver) and BP-induced activity of CYP1A1 in vitro. Coadministration of BP and menadione reduced DNA-binding activity of AhR and increased DNA-binding activity of transcription factors Oct-1 and CCAAT/enhancer binding protein (C/EBP), which are known to be involved in negative regulation of AhR-dependent genes, in vivo. Expression of another factor involved in downregulation of CYP1A-pAhR repressor (AhRR)-was lower in the liver of the rats treated with BP and menadione, indicating that the inhibitory effect of menadione on CYP1A is not mediated by this protein. Furthermore, menadione was well tolerated by the animals: no signs of acute toxicity were detected by visual examination or by assessment of weight gain dynamics or liver function. Taken together, our results suggest that menadione can be used in further studies on animal models of chemically induced carcinogenesis because menadione may suppress tumor formation and possibly progression.


Asunto(s)
Benzo(a)pireno/toxicidad , Citocromo P-450 CYP1A1/metabolismo , Vitamina K 3/farmacología , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , ADN/metabolismo , Activación Enzimática/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Unión Proteica/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcripción Genética/efectos de los fármacos , Aumento de Peso/efectos de los fármacos
15.
J Cell Biol ; 192(1): 153-69, 2011 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-21200028

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are potent survival factors for dopaminergic neurons and motoneurons with therapeutic potential for Parkinson's disease. Soluble GFLs bind to a ligand-specific glycosylphosphatidylinositol-anchored coreceptor (GDNF family receptor α) and signal through the receptor tyrosine kinase RET. In this paper, we show that all immobilized matrix-bound GFLs, except persephin, use a fundamentally different receptor. They interact with syndecan-3, a transmembrane heparan sulfate (HS) proteoglycan, by binding to its HS chains with high affinity. GFL-syndecan-3 interaction mediates both cell spreading and neurite outgrowth with the involvement of Src kinase activation. GDNF promotes migration of cortical neurons in a syndecan-3-dependent manner, and in agreement, mice lacking syndecan-3 or GDNF have a reduced number of cortical γ-aminobutyric acid-releasing neurons, suggesting a central role for the two molecules in cortical development. Collectively, syndecan-3 may directly transduce GFL signals or serve as a coreceptor, presenting GFLs to the signaling receptor RET.


Asunto(s)
Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurturina/metabolismo , Sindecano-3/metabolismo , Animales , Adhesión Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/embriología , Embrión de Mamíferos/citología , Activación Enzimática/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Heparina/metabolismo , Humanos , Proteínas Inmovilizadas/metabolismo , Interneuronas/citología , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Ligandos , Ratones , Modelos Biológicos , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Unión Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/metabolismo
16.
Mol Cell Neurosci ; 44(3): 223-32, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20350599

RESUMEN

Neurotrophic factors promote survival, proliferation and differentiation of neurons inducing intracellular signaling via specific receptors. The conventional biochemical methods often fail to reveal full repertoire of neurotrophic factor-receptor interactions because of their limited sensitivity. We evaluated several approaches to study signaling of Glial cell line-Derived Neurotrophic Factor (GDNF) family ligands and found that reporter-gene systems possess exceptionally high sensitivity and a heuristic power to identify novel biologically relevant growth factor-receptor interactions. We identified persephin, a GDNF family member, as a novel ligand for GFRalpha1/RET receptor complex. We confirmed this finding by several independent methods, including neurite outgrowth assay from the explants of sympathetic ganglia expressing Gfralpha1 and Ret mRNA but not persephin's conventional receptor GFRalpha4. As the activation of GFRalpha1/RET was shown to rescue dopaminergic neurons, our results suggest the potential of persephin for the treatment of Parkinson's disease.


Asunto(s)
Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Enfermedad de Parkinson/terapia , Transducción de Señal/fisiología , Animales , Bioensayo/métodos , Línea Celular , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Humanos , Ratones , Modelos Moleculares , Factores de Crecimiento Nervioso/química , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/fisiología , Conformación Proteica , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Ratas , Ratas Wistar
17.
Exp Neurol ; 219(2): 499-506, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19615368

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF) protects and repairs dopamine neurons. It binds to GDNF family receptor alpha1 (GFRalpha1) and activates receptor tyrosine kinase. Heparan sulphate proteoglycans (HSPGs) also participate in the signalling of GDNF, though binding to HS may hinder the diffusion of infused GDNF. We assessed the importance of heparin-binding determinants in the neuroprotective effects of GDNF in the 6-OHDA rat model of Parkinson's disease. We utilized a truncated, non-heparin-binding Delta38N-GDNF or combined wtGDNF with heparin-binding growth-associated molecule (HB-GAM, pleiotrophin). Tissue diffusion of wtGDNF+/-HB-GAM and Delta38N-GDNF was also compared. A protective effect against ipsilateral d-amphetamine-induced turning was seen with 10 microg wtGDNF, 17 microg HB-GAM+10 microg wtGDNF or 10 microg Delta38N-GDNF at 8 weeks post lesion. This effect was most pronounced with wtGDNF alone. HB-GAM (17 or 50 microg) also reduced rotational behaviour, but did not protect dopaminergic cells. Otherwise, the survival of TH-positive cells in the substantia nigra correlated with the behavioural data. Although Delta38N-GDNF was more widely distributed than wtGDNF (irrespective of its origin), stable in a brain extract, and potent in mitogen-activated kinase assay, it was inferior in vivo. The results imply that GDNF binding to HSs is needed for the optimum neuroprotective effect.


Asunto(s)
Dopamina/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Neuronas/metabolismo , Enfermedad de Parkinson Secundaria/patología , Enfermedad de Parkinson Secundaria/prevención & control , Sustancia Negra/patología , Animales , Conducta Animal/efectos de los fármacos , Proteínas Portadoras/uso terapéutico , Citocinas/uso terapéutico , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Masculino , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Oxidopamina , Enfermedad de Parkinson Secundaria/inducido químicamente , Ratas , Ratas Wistar , Eliminación de Secuencia/genética , Conducta Estereotipada/efectos de los fármacos , Distribución Tisular/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo
18.
J Biol Chem ; 283(50): 35164-72, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-18845535

RESUMEN

Glial cell line-derived neurotrophic factor (GDNF), a neuronal survival factor, binds its co-receptor GDNF family receptor alpha1 (GFR alpha 1) in a 2:2 ratio and signals through the receptor tyrosine kinase RET. We have solved the GDNF(2).GFR alpha 1(2) complex structure at 2.35 A resolution in the presence of a heparin mimic, sucrose octasulfate. The structure of our GDNF(2).GFR alpha 1(2) complex and the previously published artemin(2).GFR alpha 3(2) complex are unlike in three ways. First, we have experimentally identified residues that differ in the ligand-GFR alpha interface between the two structures, in particular ones that buttress the key conserved Arg(GFR alpha)-Glu(ligand)-Arg(GFR alpha) interaction. Second, the flexible GDNF ligand "finger" loops fit differently into the GFR alphas, which are rigid. Third, and we believe most importantly, the quaternary structure of the two tetramers is dissimilar, because the angle between the two GDNF monomers is different. This suggests that the RET-RET interaction differs in different ligand(2)-co-receptor(2)-RET(2) heterohexamer complexes. Consistent with this, we showed that GDNF(2).GFR alpha1(2) and artemin(2).GFR alpha 3(2) signal differently in a mitogen-activated protein kinase assay. Furthermore, we have shown by mutagenesis and enzyme-linked immunosorbent assays of RET phosphorylation that RET probably interacts with GFR alpha 1 residues Arg-190, Lys-194, Arg-197, Gln-198, Lys-202, Arg-257, Arg-259, Glu-323, and Asp-324 upon both domains 2 and 3. Interestingly, in our structure, sucrose octasulfate also binds to the Arg(190)-Lys(202) region in GFR alpha 1 domain 2. This may explain how GDNF.GFR alpha 1 can mediate cell adhesion and how heparin might inhibit GDNF signaling through RET.


Asunto(s)
Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/química , Factor Neurotrófico Derivado de la Línea Celular Glial/química , Heparina/química , Animales , Sitios de Unión , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Humanos , Ligandos , Sistema de Señalización de MAP Quinasas , Conformación Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Proteínas Proto-Oncogénicas c-ret/química , Ratas , Sacarosa/análogos & derivados , Sacarosa/química , Trombina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...