Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999932

RESUMEN

The World Health Organization (WHO) highlights a greater susceptibility of males to tuberculosis (TB), a vulnerability attributed to sex-specific variations in body fat and dietary factors. Our study delves into the unexplored terrain of how alterations in body fat influence Mycobacterium tuberculosis (Mtb) burden, lung pathology, immune responses, and gene expression, with a focus on sex-specific dynamics. Utilizing a low-dose Mtb-HN878 clinical strain infection model, we employ transgenic FAT-ATTAC mice with modulable body fat to explore the impact of fat loss (via fat ablation) and fat gain (via a medium-fat diet, MFD). Firstly, our investigation unveils that Mtb infection triggers severe pulmonary pathology in males, marked by shifts in metabolic signaling involving heightened lipid hydrolysis and proinflammatory signaling driven by IL-6 and localized pro-inflammatory CD8+ cells. This stands in stark contrast to females on a control regular diet (RD). Secondly, our findings indicate that both fat loss and fat gain in males lead to significantly elevated (1.6-fold (p ≤ 0.01) and 1.7-fold (p ≤ 0.001), respectively) Mtb burden in the lungs compared to females during Mtb infection (where fat loss and gain did not alter Mtb load in the lungs). This upsurge is associated with impaired lung lipid metabolism and intensified mitochondrial oxidative phosphorylation-regulated activity in lung CD8+ cells during Mtb infection. Additionally, our research brings to light that females exhibit a more robust systemic IFNγ (p ≤ 0.001) response than males during Mtb infection. This heightened response may either prevent active disease or contribute to latency in females during Mtb infection. In summary, our comprehensive analysis of the interplay between body fat changes and sex bias in Mtb infection reveals that alterations in body fat critically impact pulmonary pathology in males. Specifically, these changes significantly reduce the levels of pulmonary CD8+ T-cells and increase the Mtb burden in the lungs compared to females. The reduction in CD8+ cells in males is linked to an increase in mitochondrial oxidative phosphorylation and a decrease in TNFα, which are essential for CD8+ cell activation.


Asunto(s)
Tejido Adiposo , Pulmón , Mycobacterium tuberculosis , Animales , Femenino , Masculino , Ratones , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Pulmón/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/inmunología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/patología , Tuberculosis Pulmonar/microbiología , Ratones Transgénicos , Factores Sexuales , Modelos Animales de Enfermedad , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Caracteres Sexuales , Ratones Endogámicos C57BL
2.
iScience ; 27(5): 109672, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38660407

RESUMEN

Chronic Trypanosoma cruzi infection leads to Chagas cardiomyopathy (CCM), with varying manifestations such as inflammatory hypertrophic cardiomyopathy, arrhythmias, and dilated cardiomyopathy. The factors responsible for the increasing risk of progression to CCM are not fully understood. Previous studies link adipocyte loss to CCM progression, but the mechanism triggering CCM pathogenesis remains unexplored. Our study uncovers that T. cruzi infection triggers adipocyte apoptosis, leading to the release of extracellular vesicles named "adipomes". We developed an innovative method to isolate intact adipomes from infected mice's adipose tissue and plasma, showing they carry unique lipid cargoes. Large and Small adipomes, particularly plasma-derived infection-associated L-adipomes (P-ILA), regulate immunometabolic signaling and induce cardiomyopathy. P-ILA treatment induces hypertrophic cardiomyopathy in wild-type mice and worsens cardiomyopathy severity in post-acute-infected mice by regulating adipogenic/lipogenic and mitochondrial functions. These findings highlight adipomes' pivotal role in promoting inflammation and impairing myocardial function during cardiac remodeling in CD.

3.
Nutrients ; 15(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37242140

RESUMEN

Vanillic acid (VA) has shown antioxidant and anti-inflammatory activities in different cell types, but its biological effects in the context of early embryo development have not yet been clarified. In the current study, the impact of VA supplementation during in vitro maturation (IVM) and/or post-fertilization (in vitro culture; IVC) on redox homeostasis, mitochondrial function, AKT signaling, developmental competence, and the quality of bovine pre-implantation embryos was investigated. The results showed that dual exposure to VA during IVM and late embryo culture (IVC3) significantly improved the blastocyst development rate, reduced oxidative stress, and promoted fatty acid oxidation as well as mitochondrial activity. Additionally, the total numbers of cells and trophectoderm cells per blastocyst were higher in the VA-treated group compared to control (p < 0.05). The RT-qPCR results showed down-regulation of the mRNA of the apoptosis-specific markers and up-regulation of AKT2 and the redox homeostasis-related gene TXN in the treated group. Additionally, the immunofluorescence analysis showed high levels of pAKT-Ser473 and the fatty acid metabolism marker CPT1A in embryos developed following VA treatment. In conclusion, the study reports, for the first time, the embryotrophic effects of VA, and the potential linkage to AKT signaling pathway that could be used as an efficacious protocol in assisted reproductive technologies (ART) to improve human fertility.


Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Oocitos , Animales , Bovinos , Humanos , Oocitos/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ácido Vanílico/farmacología , Estrés Oxidativo , Desarrollo Embrionario , Transducción de Señal , Ácidos Grasos/metabolismo
4.
Life (Basel) ; 13(1)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36676177

RESUMEN

Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) infection persists as a leading cause of mortality and morbidity globally, especially in developing and underdeveloped countries. The prevalence of TB-DM (diabetes mellitus) is higher in low- and middle-income countries where TB and DM are most prevalent. Epidemiological data suggest that slight obesity reduces the risk of TB, whereas DM increases the risk of pulmonary TB. Diets can alter the levels of body fat mass and body mass index by regulating systemic adiposity. Earlier, using a transgenic Mtb-infected murine model, we demonstrated that loss of body fat increased the risk of pulmonary bacterial load and pathology. In the present study, we investigated whether increased adiposity alters pulmonary pathology and bacterial load using C57BL/6 mice infected with HN878 Mtb strain and fed a medium-fat diet (MFD). We analyzed the effects of MFD on the lung during acute and chronic infections by comparing the results to those obtained with infected mice fed a regular diet (RD). Histological and biochemical analyses demonstrated that MFD reduces bacterial burden by increasing the activation of immune cells in the lungs during acute infection and reduces necrosis in the lungs during chronic infection by decreasing lipid accumulation. Our data suggest that slight adiposity likely protects the host during active TB infection by regulating immune and metabolic conditions in the lungs.

5.
Animals (Basel) ; 12(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35203134

RESUMEN

Exosomes are nano-sized vesicles with abundant nucleic acids, proteins, lipids, and other regulatory molecules. The aim of this study was to examine the effect of BOEC-Exo on bovine in vitro oocyte maturation and in vitro embryo development. We found that a 3% Exo supplementation to IVM media significantly enhanced the oocyte maturation and reduced the accumulation of ROS in MII-stage bovine oocytes. Oocyte maturation related genes (GDF9 and CPEB1) also confirmed that 3% Exo treatment to oocytes significantly (p < 0.05) enhanced the oocyte maturation. Next, we cultured bovine cumulus cells and assessed the effects of 3% Exo, which showed a reduced level of apoptotic proteins (caspase-3 and p-NF-κB protein expressions). Furthermore, we examined the gap junction (CX43 and CX37) and cumulus cells expansion related genes (HAS2, PTX3, and GREM1) in cumulus-oocyte complexes (COCs), and all those genes showed significantly (p < 0.05) higher expressions in 3% Exo-treated COCs as compared with the control group. Moreover, peroxisome proliferator-activated receptors (PPARs) and lipid metabolism-related genes (CPT1 and FABP3) were also analyzed in both the control and 3% Exo groups and the results showed significant (p < 0.05) enhancement in the lipid metabolism. Finally, the oocytes matured in the presence of 3% Exo showed a significantly higher rate of embryo development and better implantation potential. Finally, we concluded that Exo positively influenced bovine oocyte in vitro maturation and improved the early embryo's developmental competence.

6.
Reproduction ; 163(4): 219-232, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35129460

RESUMEN

Cryopreservation is a process in which the intact living cells, tissues, or embryos are preserved at subzero temperatures for preservation. The cryopreservation process highly impacts the survival and quality of the in vitro-produced (IVP) embryos. Some studies have highlighted the use of oviduct extracellular vesicles (EVs) to improve the cryotolerance of IVP embryos but the mechanism has not been well studied. The present study unravels the role of in vitro cultured bovine oviduct epithelial cells-derived EVs in improving the re-expansion and hatching potential of thawed blastocysts (BLs). The comparison of cryotolerance between synthetic oviduct fluid (SOF) and SOF + EVs-supplemented day-7 cryopreserved BLs revealed that the embryo's ability to re-expand critically depends on the intact paracellular sealing which facilitates increased fluid accumulation during cavity expansion after shrinkage. Our results demonstrated that BLs cultured in the SOF + EVs group had remarkably higher re-expansion (67.5 ± 4.2%) and hatching rate (84.8 ± 1.4%) compared to the SOF group (53.4 ± 3.4% and 63.9 ± 0.9%, respectively). Interestingly, EVs-supplemented BLs exhibited greater influence on the expression of core genes involved in trophectoderm (TE) maintenance, formation of tight junction (TJ) assembly, H2O channel proteins (aquaporins), and Na+/K+ ATPase alpha 1. The EVs improved the fluid flux and allowed the transport of H2O into an actively re-expanded cavity in EVs-cultured cryo-survived BLs relative to control BLs. Our findings explored the function of EVs in restoring the TE integrity, improved the cell junctional contacts and H2O movement which helps the blastocoel re-expansion after thawing the cryopreserved BLs.


Asunto(s)
Vesículas Extracelulares , Uniones Estrechas , Animales , Blastocisto/metabolismo , Bovinos , Criopreservación/métodos , Criopreservación/veterinaria , Técnicas de Cultivo de Embriones/métodos , Embrión de Mamíferos , Desarrollo Embrionario , Vesículas Extracelulares/metabolismo , Femenino , Fertilización In Vitro/métodos , Fertilización In Vitro/veterinaria , Humanos
7.
Int J Mol Sci ; 22(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072531

RESUMEN

Cytoplasm injection cloning technology (CICT) is an efficient technique for evaluating the developmental potential of cloned embryos. In this study, we investigated the effects of donor cell type on the developmental potential and quality of cloned bovine embryos. Adult fibroblasts (AFs) and embryonic cells (ECs) were used as donor cells to clone bovine embryos using CICT. We initially used AF cells to develop cloned embryos and then cultured the cloned day-8 blastocysts for 10 days to obtain ECs as donor cells for second embryo cloning. We found that the bovine blastocysts cloned using AF cells had significantly reduced developmental rates, embryo quality, and ratios of inner cell mass (ICM) to the total number of cells compared to those using ECs as donor cells. Furthermore, there were significant differences in the DNA methyltransferase-, histone deacetylation-, apoptosis-, and development-related genes at the blastocyst stage in embryos cloned from AFs compared to those in embryos cloned from ECs. Our results suggest that using ECs as donor cells for nuclear transfer enhances the quantity and quality of cloned embryos. However, further investigation is required in terms of determining pregnancy rates and developing cloned embryos from different donor cell types.


Asunto(s)
Técnicas de Reprogramación Celular , Clonación de Organismos , Embrión de Mamíferos , Desarrollo Embrionario , Técnicas de Transferencia Nuclear , Animales , Apoptosis/genética , Biomarcadores , Bovinos , Clonación de Organismos/métodos , Metilación de ADN , Implantación del Embrión , Epigénesis Genética , Femenino , Fibroblastos , Expresión Génica , Histonas/metabolismo , Embarazo , Sensibilidad y Especificidad , Donantes de Tejidos
8.
Int J Mol Sci ; 22(10)2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34070219

RESUMEN

Age-associated decline in oocyte quality is one of the dominant factors of low fertility. Aging alters several key processes, such as telomere lengthening, cell senescence, and cellular longevity of granulosa cells surrounding oocyte. To investigate the age-dependent molecular changes, we examined the expression, localization, and correlation of telomerase reverse transcriptase (TERT) and ß-Klotho (KLB) in bovine granulosa cells, oocytes, and early embryos during the aging process. Herein, cumulus-oocyte complexes (COCs) obtained from aged cows (>120 months) via ovum pick-up (OPU) showed reduced expression of ß-Klotho and its co-receptor fibroblast growth factor receptor 1 (FGFR1). TERT plasmid injection into pronuclear zygotes not only markedly enhanced day-8 blastocysts' development competence (39.1 ± 0.8%) compared to the control (31.1 ± 0.5%) and D-galactose (17.9 ± 1.0%) treatment groups but also enhanced KLB and FGFR1 expression. In addition, plasmid-injected zygotes displayed a considerable enhancement in blastocyst quality and implantation potential. Cycloastragenol (CAG), an extract of saponins, stimulates telomerase enzymes and enhances KLB expression and alleviates age-related deterioration in cultured primary bovine granulosa cells. In conclusion, telomerase activation or constitutive expression will increase KLB expression and activate the FGFR1/ß-Klotho pathway in bovine granulosa cells and early embryos, inhibiting age-related malfunctioning.


Asunto(s)
Blastocisto/metabolismo , Bovinos/embriología , Bovinos/genética , Proteínas de la Membrana/genética , Preñez/genética , Telomerasa/genética , Envejecimiento/genética , Envejecimiento/fisiología , Animales , Bovinos/fisiología , Células Cultivadas , Fase de Segmentación del Huevo/metabolismo , Implantación del Embrión/genética , Implantación del Embrión/fisiología , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Femenino , Expresión Génica , Células de la Granulosa/metabolismo , Proteínas de la Membrana/metabolismo , Oocitos/crecimiento & desarrollo , Oocitos/metabolismo , Embarazo , Preñez/fisiología , Especies Reactivas de Oxígeno/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética
9.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673357

RESUMEN

The Wnt/ß-catenin signaling pathway plays a crucial role in early embryonic development. Wnt/ß-catenin signaling is a major regulator of cell proliferation and keeps embryonic stem cells (ESCs) in the pluripotent state. Dysregulation of Wnt signaling in the early developmental stages causes several hereditary diseases that lead to embryonic abnormalities. Several other signaling molecules are directly or indirectly activated in response to Wnt/ß-catenin stimulation. The crosstalk of these signaling factors either synergizes or opposes the transcriptional activation of ß-catenin/Tcf4-mediated target gene expression. Recently, the crosstalk between the peroxisome proliferator-activated receptor delta (PPARδ), which belongs to the steroid superfamily, and Wnt/ß-catenin signaling has been reported to take place during several aspects of embryonic development. However, numerous questions need to be answered regarding the function and regulation of PPARδ in coordination with the Wnt/ß-catenin pathway. Here, we have summarized the functional activation of the PPARδ in co-ordination with the Wnt/ß-catenin pathway during the regulation of several aspects of embryonic development, stem cell regulation and maintenance, as well as during the progression of several metabolic disorders.


Asunto(s)
Diferenciación Celular , Desarrollo Embrionario , Células Madre Embrionarias Humanas/metabolismo , Enfermedades Metabólicas/embriología , PPAR delta/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Células Madre Embrionarias Humanas/patología , Humanos , Enfermedades Metabólicas/patología , Factor de Transcripción 4/metabolismo
10.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066562

RESUMEN

Oviduct flushing is enriched by a wide variety of nutrients that guide the 3-4 days journey of pre-implantation embryo through the oviduct as it develops into a competent blastocyst (BL). However, little is known about the specific requirement and role of these nutrients that orchestrate the early stages of embryonic development. In this study, we aimed to characterize the effect of in vitro-derived bovine oviduct epithelial cell (BOECs) secretion that mimics the in vivo oviduct micro-fluid like environment, which allows successful embryonic development. In this study, the addition of an in vitro derived BOECs-condition media (CM) and its isolated exosomes (Exo) significantly enhances the quality and development of BL, while the hatching ability of BLs was found to be high (48.8%) in the BOECs-Exo supplemented group. Surprisingly, BOECs-Exo have a dynamic effect on modulating the embryonic metabolism by restoring the pyruvate flux into TCA-cycle. Our analysis reveals that Exo treatment significantly upregulates the pyruvate dehydrogenase (PDH) and glutamate dehydrogenase (GLUD1) expression, required for metabolic fine-tuning of the TCA-cycle in the developing embryos. Exo treatment increases the influx into TCA-cycle by strongly suppressing the PDH and GLUD1 upstream inhibitors, i.e., PDK4 and SIRT4. Improvement of TCA-cycle function was further accompanied by higher metabolic activity of mitochondria in BOECs-CM and Exo in vitro embryos. Our study uncovered, for the first time, the possible mechanism of BOECs-derived secretion in re-establishing the TCA-cycle flux by the utilization of available nutrients and highlighted the importance of pyruvate in supporting bovine in vitro embryonic development.


Asunto(s)
Blastocisto/metabolismo , Medios de Cultivo Condicionados/farmacología , Exosomas/metabolismo , Mitocondrias/metabolismo , Oviductos/metabolismo , Animales , Blastocisto/efectos de los fármacos , Bovinos , Células Cultivadas , Ciclo del Ácido Cítrico , Células Epiteliales/metabolismo , Femenino , Glutamato Deshidrogenasa/genética , Glutamato Deshidrogenasa/metabolismo , Mitocondrias/efectos de los fármacos , Oviductos/citología , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo
11.
Cells ; 9(6)2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630550

RESUMEN

Nicotinamide (NAM), the amide form of vitamin B3, plays pivotal roles in regulating various cellular processes including energy production and maintenance of genomic stability. The current study aimed at deciphering the effect of NAM, when administered during in vitro maturation (IVM), on the developmental competence of bovine preimplantation embryos. Our results showed that low NAM concentrations reduced the oxidative stress and improved mitochondrial profile, total cleavage and 8-16 cell stage embryo development whereas the opposite profile was observed upon exposure to high NAM concentrations (10 mM onward). Remarkably, the hatching rates of day-7 and day-8 blastocysts were significantly improved under 0.1 mM NAM treatment. Using RT-qPCR and immunofluorescence, the autophagy-related (Beclin-1 (BECN1), LC3B, and ATG5) and the apoptotic (Caspases; CASP3 and 9) markers were upregulated in oocytes exposed to high NAM concentration (40 mM), whereas only CASP3 was affected, downregulated, following 0.1 mM treatment. Additionally, the number of cells per blastocyst and the levels of SIRT1, PI3K, AKT, and mTOR were higher, while the inner cell mass-specific transcription factors GATA6, SOX2, and OCT4 were more abundant, in day-8 embryos of NAM-treated group. Taken together, to our knowledge, this is the first study reporting that administration of low NAM concentrations during IVM can ameliorate the developmental competence of embryos through the potential regulation of oxidative stress, apoptosis, and SIRT1/AKT signaling.


Asunto(s)
Blastocisto/metabolismo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Niacinamida/uso terapéutico , Oocitos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Bovinos , Suplementos Dietéticos , Femenino , Humanos , Transducción de Señal
12.
Cells ; 9(4)2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283810

RESUMEN

Wnt/ß-catenin signaling plays vital role in the regulation of cellular proliferation, migration, stem cells cell renewal and genetic stability. This pathway is crucial during the early developmental process; however, the distinct role of Wnt/ß-catenin signaling during pre-implantation period of bovine embryonic development is obscure. Here, we evaluated the critical role of Wnt/ß-catenin pathway in the regulation of bovine blastocyst (BL) development and hatching. 6 bromoindurbin-3'oxime (6-Bio) was used to stimulate the Wnt signaling. Treatment with 6-Bio induced the expression of peroxisome proliferator-activated receptor-delta (PPARδ). Interestingly, the PPARδ co-localized with ß-catenin and form a complex with TCF/LEF transcription factor. This complex potentiated the expression of several Wnt directed genes, which regulate early embryonic development. Inhibition of PPARδ with selective inhibitor 4-chloro-N-(2-{[5-trifluoromethyl]-2-pyridyl]sulfonyl}ethyl)benzamide (Gsk3787) severely perturbed the BL formation and hatching. The addition of Wnt agonist successfully rescued the BL formation and hatching ability. Importantly, the activation of PPARδ expression by Wnt stimulation enhanced cell proliferation and fatty acid oxidation (FAO) metabolism to improve BL development and hatching. In conclusion, our study provides the evidence that Wnt induced PPARδ expression co-localizes with ß-catenin and is a likely candidate of canonical Wnt pathway for the regulation of bovine embryonic development.


Asunto(s)
Blastocisto/metabolismo , Desarrollo Embrionario/genética , PPAR delta/genética , Vía de Señalización Wnt/genética , Animales , Bovinos , Masculino , PPAR delta/metabolismo
13.
Int J Mol Sci ; 20(23)2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31810173

RESUMEN

The PPARs (peroxisome proliferator-activated receptors) play critical roles in the regulation of lipid and glucose metabolism. PPARδ, a member of the PPARs family, is associated with decreased susceptibility to ectopic lipid deposition and is implicated in the regulation of mitochondrial processes. The current study aimed to determine the role of PPARδ in fatty acid ß-oxidation and its influence on PEPCK for the lipogenic/lipolytic balance during in vitro bovine oocyte maturation and embryo development. Activation of PPARδ by GW501516, but not 2-BP, was indicated by intact embryonic PEPCK (cytosolic) and CPT1 expression and the balance between free fatty acids and mitochondrial ß-oxidation that reduced ROS and inhibited p-NF-κB nuclear localization. Genes involved in lipolysis, fatty acid oxidation, and apoptosis showed significant differences after the GW501516 treatment relative to the control- and 2-BP-treated embryos. GSK3787 reversed the PPARδ-induced effects by reducing PEPCK and CPT1 expression and the mitochondrial membrane potential, revealing the importance of PPARδ/PEPCK and PPARδ/CPT1 for controlling lipolysis during embryo development. In conclusion, GW501516-activated PPARδ maintained the correlation between lipolysis and lipogenesis by enhancing PEPCK and CPT1 to improve bovine embryo quality.


Asunto(s)
Carnitina O-Palmitoiltransferasa/genética , Desarrollo Embrionario/genética , PPAR delta/genética , Fosfoenolpiruvato Carboxilasa/genética , Animales , Apoptosis , Bovinos , Ácidos Grasos no Esterificados/metabolismo , Metabolismo de los Lípidos/genética , Lipogénesis/efectos de los fármacos , Lipólisis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Oxidación-Reducción , Tiazoles/farmacología
14.
Cells ; 8(10)2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31635340

RESUMEN

This study was aimed to investigate the role of SHP2 (Src-homology-2-containing phosphotyrosine phosphatase) in intricate signaling networks invoked by bovine oocyte to achieve maturation and blastocyst development. PTPN11 (Protein Tyrosine Phosphatase, non-receptor type 11) encoding protein SHP2, a positive transducer of RTKs (Receptor Tyrosine Kinases) and cytokine receptors, can play a significant role in bovine oocyte maturation and embryo development, but this phenomenon has not yet been explored. Here, we used different growth factors, cytokines, selective activator, and a specific inhibitor of SHP2 to ascertain its role in bovine oocyte developmental stages in vitro. We found that SHP2 became activated by growth factors and cytokines treatment and was highly involved in the activation of oocyte maturation and embryo development pathways. Activation of SHP2 triggered MAPK (mitogen-activated protein kinases) and PI3K/AKT (Phosphoinositide 3-kinase/Protein kinase B) signaling cascades, which is not only important for GVBD (germinal vesical breakdown) induction but also for maternal mRNA translation. Inhibition of phosphatase activity of SHP2 with PHPS1 (Phenylhydrazonopyrazolone sulfonate 1) reduced oocytes maturation as well as bovine blastocyst ICM (inner cell mass) volume. Supplementation of LIF (Leukemia Inhibitory Factor) to embryos showed an unconventional direct relation between p-SHP2 and p-STAT3 (Signal transducer and activator of transcription 3) for blastocyst ICM development. Other than growth factors and cytokines, cisplatin was used to activate SHP2. Cisplatin activated SHP2 modulate growth factors effect and combine treatment significantly enhanced quality and rate of developed blastocysts.


Asunto(s)
Blastocisto/citología , Blastocisto/metabolismo , Oocitos/citología , Oocitos/metabolismo , Ovario/citología , Ovario/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Animales , Apoptosis/efectos de los fármacos , Bencenosulfonatos/farmacología , Western Blotting , Bovinos , Cromatina/metabolismo , Cisplatino/farmacología , ADN Complementario/genética , ADN Complementario/metabolismo , Femenino , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Hidrazonas/farmacología , Etiquetado Corte-Fin in Situ , Factor Inhibidor de Leucemia/farmacología , Masculino , Proteína Tirosina Fosfatasa no Receptora Tipo 11/antagonistas & inhibidores , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Citocinas/metabolismo
15.
Int J Mol Sci ; 21(1)2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31905822

RESUMEN

Sex-related growth differences between male and female embryos remain an attractive subject for reproductive biologists. This study aimed to investigate the endogenous factors that play a crucial role in the pace of early development between male and female bovine embryos. Using sex pre-selected semen by Y-specific monoclonal antibodies for the production of bovine embryos, we characterized the critical endogenous factors that are responsible for creating the development differences, especially during the pre-implantation period between male and female embryos. Our results showed that at day seven, (57.8%) Y-sperm sorted in vitro cultured embryos reached the expanded blastocyst (BL) stage, whereas the X-sperm sorted group were only 25%. Y-BLs showed higher mRNA abundance of pluripotency and developmental competency regulators, such as Oct4 and IGF1-R. Interestingly, Y-sperm sorted BLs had a homogeneous mitochondrial distribution pattern, higher mitochondrial membrane potential (∆Ñ°m), efficient OXPHOS (oxidative phosphorylation) system and well-encountered production of ROS (reactive oxygen species) level. Moreover, Y-blastocysts (BLs) showed less utilization of glucose metabolism relative to the X-BLs group. Importantly, both sexes showed differences in the timing of epigenetic events. All these factors directly or indirectly orchestrate the whole embryonic progression and may help in the faster and better quality yield of BL in the Y-sperm sorted group compared to the X counterpart group.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Blastocisto/metabolismo , Desarrollo Embrionario/inmunología , Cromosoma Y , Animales , Bovinos/embriología , Embrión de Mamíferos , Desarrollo Embrionario/genética , Femenino , Genes Ligados a X , Genes Ligados a Y , Glucosa/metabolismo , Cinética , Masculino , Potencial de la Membrana Mitocondrial , Mitocondrias , Fosforilación , Factores Sexuales , Espermatozoides , Cromosoma X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...