Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 327(3): F476-F488, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38991005

RESUMEN

The etiology of interstitial cystitis/bladder pain syndrome (IC/BPS) is unknown but likely multifactorial. IC/BPS symptoms can be exacerbated by psychological stress, but underlying mechanisms remain to be defined. Transient receptor potential vanilloid 1 (TRPV1) channels, expressed on nerve fibers, have been implicated in bladder dysfunction and colonic hypersensitivity with stress in rodents. Histamine/H1R activation of TRPV1+ nerves increases bladder afferent fiber sensitivity to distension. TRPV1 channels are also expressed on mast cells, previously implicated in contributing to IC/BPS etiology and symptoms. We have examined the contribution of TRPV1 and mast cells to bladder dysfunction after repeated variate stress (RVS). RVS increased (P ≤ 0.05) serum and fecal corticosterone expression and induced anxiety-like behavior in wild-type (WT) mice. Intravesical instillation of the selective TRPV1 antagonist capsazepine (CPZ) rescued RVS-induced bladder dysfunction in WT mice. Trpv1 knockout (KO) mice did not increase voiding frequency with RVS and did not exhibit increased serum corticosterone expression despite exhibiting anxiety-like behavior. Mast cell-deficient mice (B6.Cg-Kitw-sh) failed to demonstrate RVS-induced increased voiding frequency or serum corticosterone expression, whereas control (no stress) mast cell-deficient mice had similar functional bladder capacity to WT mice. TRPV1 protein expression was significantly increased in the rostral lumbar (L1-L2) spinal cord and dorsal root ganglia (DRG) in WT mice exposed to RVS, but no changes were observed in lumbosacral (L6-S1) spinal segments or DRG. These studies demonstrated TRPV1 and mast cell involvement in RVS-induced increased voiding frequency and suggest that TRPV1 and mast cells may be useful targets to mitigate stress-induced urinary bladder dysfunction.NEW & NOTEWORTHY Using pharmacological tools and transgenic mice in a repeated variate stress (RVS) model in female mice, we demonstrate that transient receptor potential vanilloid 1 (TRPV1) and mast cells contribute to the increased voiding frequency observed following RVS. TRPV1 and mast cells should continue to be considered as targets to improve bladder function in stress-induced bladder dysfunction.


Asunto(s)
Corticosterona , Mastocitos , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Psicológico , Canales Catiónicos TRPV , Vejiga Urinaria , Animales , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Mastocitos/metabolismo , Femenino , Vejiga Urinaria/metabolismo , Vejiga Urinaria/inervación , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Corticosterona/sangre , Modelos Animales de Enfermedad , Cistitis Intersticial/metabolismo , Cistitis Intersticial/fisiopatología , Cistitis Intersticial/patología , Cistitis Intersticial/genética , Ratones , Micción , Capsaicina/farmacología , Capsaicina/análogos & derivados , Conducta Animal , Ansiedad/metabolismo
2.
Front Urol ; 22023.
Artículo en Inglés | MEDLINE | ID: mdl-37692906

RESUMEN

Psychological stress is associated with urinary bladder dysfunction (e.g., increased voiding frequency, urgency and pelvic pain); however, the mechanisms underlying the effects of stress on urinary bladder function are unknown. Transient receptor potential (TRP) channels (vanilloid family) may be potential targets for intervention due to their distribution in the LUT and role in pain. Here, we examine a model of repeated variate stress (RVS) of 2 week (wk) or 4 wk duration in female mice and its effects on bladder function, anxiety-like behavior, and TRPV transcript expression in urinary bladder and lumbosacral spinal cord and associated dorsal root ganglia (DRG). Using continuous infusion, open-outlet cystometry in conscious mice, RVS significantly (p ≤ 0.05) decreased infused volume and intermicturition interval. Bladder pressures (threshold, average, minimum, and maximum pressures) were unchanged with RVS. Quantitative PCR demonstrated significant (p ≤ 0.05) changes in TrpV1 and TrpV4 mRNA expression between control and RVS cohorts in the urothelium, lumbosacral spinal cord, and DRG. Future directions will examine the contribution of TRP channels on bladder function, somatic sensation and anxiety-like behavior following RVS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA