Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(7): e0287205, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37494380

RESUMEN

Rodents have the capacity for spontaneous bladder regeneration and bladder smooth muscle cell (BSMC) migration following a subtotal cystectomy (STC). YAP/WWTR1 and BDNF (Brain-derived neurotrophic factor) play crucial roles in development and regeneration. During partial bladder outlet obstruction (PBO), excessive YAP/WWTR1 signaling and BDNF expression increases BSMC hypertrophy and dysfunction. YAP/WWTR1 and expression of BDNF and CYR61 were examined in models of regeneration and wound repair. Live cell microscopy was utilized in an ex vivo model of STC to visualize cell movement and division. In Sprague-Dawley female rats, STC was performed by resection of the bladder dome sparing the trigone, followed by closure of the bladder. Smooth muscle migration and downstream effects on signaling and expression were also examined after scratch wound of BSMC with inhibitors of YAP and BDNF signaling. Sham, PBO and incision (cystotomy) were comparators for the STC model. Scratch wound in vitro increased SMC migration and expression of BDNF, CTGF and CYR61 in a YAP/WWTR1-dependent manner. Inhibition of YAP/WWTR1 and BDNF signaling reduced scratch-induced migration. BDNF and CYR61 expression was elevated during STC and PBO. STC induces discrete genes associated with endogenous de novo cell regeneration downstream of YAP/WWTR1 activation.


Asunto(s)
Cistectomía , Vejiga Urinaria , Ratas , Animales , Femenino , Vejiga Urinaria/metabolismo , Ratas Sprague-Dawley , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Músculo Liso/metabolismo , Regeneración/fisiología , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ
2.
J Biomech ; 144: 111355, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36341991

RESUMEN

The abdominal wall (external oblique (EO), internal oblique (IO), rectus abdominis (RA), and transverse abdominis (TrA)) is a functionally and anatomically integrated group of muscles. While the passive mechanical properties of the individual abdominal muscles have been studied previously, their contractile properties have yet to be described. Muscle samples were taken from the EO, IO, RA, and TrA of 6 Sprague-Dawley rats. Single muscle fibres were isolated from each sample, chemically permeabilized and tested in a Ca2+ (pCa 4.2) bath to determine their contractile properties: specific force, active modulus, unloaded shortening velocity, and rate of force redevelopment. Myosin heavy chain (MHC) isoforms were identified by gel electrophoresis to determine the fibre type of each tested fibre, as well as larger bundles of fibres. No type I fibres and only two type IIa fibres were tested, therefore type IIx and IIb fibres were combined for statistical analysis. There were no significant differences between muscles for specific force, active modulus, and unloaded shortening velocity (p > 0.05). Rate of force redevelopment was statistically significant (p = 0.029), with TrA being 62 % greater than EO, suggesting faster cross-bridge transitioning between low and high force-generating states in the TrA. The functional significance of this difference is unclear and will need to be studied further.


Asunto(s)
Pared Abdominal , Ratas , Animales , Ratas Sprague-Dawley , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/fisiología , Cadenas Pesadas de Miosina , Músculos Abdominales/fisiología , Músculo Esquelético/fisiología
3.
FASEB J ; 34(3): 3594-3615, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31984552

RESUMEN

Current and potential medical therapy for obstruction-induced myopathic bladder dysfunction (from benign prostatic hyperplasia or posterior urethral valves) focuses on symptoms. The persistent tissue pathology and dysfunction after release of obstruction is often deemed irreversible without any systematic therapeutic approaches. As rapamycin can attenuate bladder smooth muscle hypertrophy and dysfunction during the genesis of partial obstruction in vivo, we tested whether rapamycin could improve persistent function after release of obstruction (de-obstruction or REL). Female Sprague-Dawley rat bladders were partially obstructed (PBO) by suturing around both the urethra and a para-urethral steel rod, then removing the rod. One day prior to release of obstruction (preREL), voiding parameters and residual urine volume of preREL+future rapa, preREL+future veh groups were recorded. Release of obstruction (REL) was performed by suture removal following 6 weeks of PBO. For 4 more weeks after the de-obstruction, REL animals were randomized to rapamycin (REL+rapa) or vehicle (REL+veh). PBO for 6 weeks were used as positive controls. In shams, the urethra was exposed, but no suture tied. Voiding parameters and residual urine volume were measured prior to sacrifice of sham and REL+veh or REL+rapa, and PBO. Rapamycin efficacy was tested by pair-wise comparison of changes in individual voiding data from preREL+future veh or preREL+future rapa versus REL+veh or REL+rapa, respectively, as well as by comparisons of REL+veh to REL+rapa groups. Bladders were weighed and processed for a high-throughput QPCR array, and histopathology. Bladder/body mass ratios with PBO increased significantly and remained higher in the release phase in REL+veh animals. REL+rapa versus REL+veh improved residual volumes and micturition fractions toward sham levels. Three genes encoding extracellular proteins, BMP2, SOD3, and IGFBP7, correlated with functional improvement by Pearson's correlations. The promoters of these genes showed enrichment for several motifs including circadian E-boxes. While obstruction and REL augmented CLOCK and NPAS2 expression above sham levels, rapamycin treatment during release significantly blocked their expression. This experimental design of pharmaco-intervention during the de-obstruction phase revealed a novel pathway dysregulated during the clinically relevant treatment phase of obstructive bladder myopathy.


Asunto(s)
Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/metabolismo , Sirolimus/uso terapéutico , Obstrucción del Cuello de la Vejiga Urinaria/tratamiento farmacológico , Obstrucción del Cuello de la Vejiga Urinaria/metabolismo , Animales , Femenino , Enfermedades Musculares/patología , Ratas , Ratas Sprague-Dawley , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Obstrucción del Cuello de la Vejiga Urinaria/patología , Micción/efectos de los fármacos
4.
Am J Pathol ; 188(10): 2177-2194, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30121256

RESUMEN

Chronic bladder obstruction and bladder smooth muscle cell (SMC) stretch provide fibrotic and mechanical environments that can lead to epigenetic change. Therefore, we examined the role of DNA methylation in bladder pathology and transcriptional control. Sprague-Dawley female rats underwent partial bladder obstruction by ligation of a silk suture around the proximal urethra next to a 0.9-mm steel rod. Sham operation comprised passing the suture around the urethra. After 2 weeks, rats were randomized to normal saline or DNA methyltransferase inhibitor, 5-aza-2-deoxycytidine (DAC) at 1 mg/kg, three times/week intraperitoneally. After 6 weeks, bladders were weighed and divided for histology and RNA analysis by high-throughput real-time quantitative PCR arrays. DAC treatment during obstruction in vivo profoundly augmented brain-derived neurotrophic factor (BDNF) expression compared with the obstruction with vehicle group, which was statistically correlated with pathophysiologic parameters. BDNF, cysteine rich angiogenic inducer 61 (CYR61), and connective tissue growth factor (CTGF) expression clustered tightly together using Pearson's correlation analysis. Their promoters were associated with the TEA domain family member 1 (TEAD1) and Yes-associated protein 1/WW domain containing transcription regulator 1 pathways. Interestingly, DAC treatment increased BDNF expression in bladder SMCs (P < 0.0002). Stretch-induced BDNF was inhibited by the YAP/WWTR1 inhibitor verteporfin. Verteporfin improved the SMC phenotype (proliferative markers and SMC marker expression), in part by reducing BDNF. Expression of BDNF is limited by DNA methylation and associated with pathophysiologic changes during partial bladder outlet obstruction and SMC phenotypic change in vitro.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/antagonistas & inhibidores , Metilación de ADN/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Proto-Oncogénicas c-yes/metabolismo , Obstrucción del Cuello de la Vejiga Urinaria/fisiopatología , Animales , Células Cultivadas , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Proteína 61 Rica en Cisteína/metabolismo , Femenino , Miocitos del Músculo Liso/fisiología , Ratas Sprague-Dawley , Estrés Mecánico , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Verteporfina/farmacología , Dominios WW/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...