Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
J Exp Biol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119673

RESUMEN

Stretch-shortening cycles (SSCs) involve muscle lengthening (eccentric contractions) instantly followed by shortening (concentric contractions). This combination enhances force, work, and power output compared to pure shortening (SHO), which is known as SSC-effect. Recent evidence indicates both cross-bridge-based (XB) and non-cross-bridge-based (non-XB, e.g., titin) structures contribute to this effect. This study analyzed force re-development following SSCs and SHO to gain further insight into the roles of XB and non-XB structures regarding the SSC-effect. Experiments were conducted on rat soleus muscle fibres (n=16) with different SSC velocities (30%, 60%, 85% of maximum shortening velocity) and constant stretch-shortening magnitudes (18% of optimum length). The XB inhibitor blebbistatin was used to distinguish between XB and non-XB contributions to force generation. Results showed SSCs led to significantly greater (1.02±.15 vs. 0.68±.09 [ΔF/Δt]; t(62)=8.61, p<.001, d=2.79) and faster (75 ms vs. 205 [ms]; t(62) = -6.37, p<.001, d=-1.48) force re-development compared to SHO in the control treatment. In the blebbistatin treatment, SSCs still resulted in greater (.11±.03 vs. .06±.01 [ΔF/Δt]; t(62) = 8.00, p<.001, d=2.24) and faster (3010±1631 vs. 7916±3230 [ms]; t(62) = -8.00, p<.001, d=-1.92) force re-development compared to SHO. These findings deepen our understanding of the SSC-effect, underscoring the involvement of non-XB structures like titin in modulating force production. This modulation likely involves complex mechanosensory coupling from stretch to signal transmission during muscle contraction.

2.
J Child Orthop ; 18(4): 404-413, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39100986

RESUMEN

Background: Joint range of motion based on the neutral null method, muscle strength based on manual muscle testing, and selective voluntary motor control based on selective control assessment of the lower extremity are standard parameters of a pediatric three-dimensional clinical gait analysis. Lower-limb reference data of children are necessary to identify and quantify abnormalities, but these are limited and when present restricted to specific joints or muscles. Methods: This is the first study that encompasses the aforementioned parameters from a single group of 34 typically developing children aged 5-17 years. Left and right values were averaged for each participant, and then the mean and standard deviation calculated for the entire sample. The data set was tested for statistical significance (p < 0.05). Results: Joint angle reference values are mostly consistent with previously published standards, although there is a large variability in the existing literature. All muscle strength distributions, except for M. quadriceps femoris, differ significantly from the maximum value of 5. The mean number of repetitions of heel-rise test is 12 ± 5. Selective voluntary motor control shows that all distributions, except for M. quadriceps femoris, differ significantly from the maximum value of 2. Conclusion: Since typically developing children do not match expectations and reference values from the available literature and clinical use, this study emphasizes the importance of normative data. Excessively high expectations lead to typically developing children being falsely underestimated and affected children being rated too low. This is of great relevance for therapists and clinicians. Level of evidence: 3.

3.
Pflugers Arch ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39043889

RESUMEN

After an initial increase, isovelocity elongation of a muscle fiber can lead to diminishing (referred to as Give in the literature) and subsequently increasing force. How the stretch velocity affects this behavior in slow-twitch fibers remains largely unexplored. Here, we stretched fully activated individual rat soleus muscle fibers from 0.85 to 1.3 optimal fiber length at stretch velocities of 0.01, 0.1, and 1 maximum shortening velocity, vmax, and compared the results with those of rat EDL fast-twitch fibers obtained in similar experimental conditions. In soleus muscle fibers, Give was 7%, 18%, and 44% of maximum isometric force for 0.01, 0.1, and 1 vmax, respectively. As in EDL fibers, the force increased nearly linearly in the second half of the stretch, although the number of crossbridges decreased, and its slope increased with stretch velocity. Our findings are consistent with the concept of a forceful detachment and subsequent crossbridge reattachment in the stretch's first phase and a strong viscoelastic titin contribution to fiber force in the second phase of the stretch. Interestingly, we found interaction effects of stretch velocity and fiber type on force parameters in both stretch phases, hinting at fiber type-specific differences in crossbridge and titin contributions to eccentric force. Whether fiber type-specific combined XB and non-XB models can explain these effects or if they hint at some not fully understood properties of muscle contraction remains to be shown. These results may stimulate new optimization perspectives in sports training and provide a better understanding of structure-function relations of muscle proteins.

4.
J Appl Physiol (1985) ; 137(2): 394-408, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38932683

RESUMEN

Stretch-shortening cycles (SSCs) outperform shortening contractions preceded by isometric contractions in terms of enhanced force/torque, work, and power production during shortening. This so-called SSC effect is presumably related to the active muscle stretch before shortening in SSCs. However, it remains unclear whether the effects of stretch-induced higher preload level or stretch-induced history dependence maximize the SSC effect. Therefore, we analyzed fascicle behavior, muscle-tendon unit (MTU) shortening work, and torque/force (n = 12 participants) via ultrasound and dynamometry during electrically stimulated submaximal plantar flexion contractions from 10° plantarflexion to 15° dorsiflexion. To elucidate the effects of preload level and preload modality (i.e., contraction type) on shortening performance, muscle-tendon unit shortening was preceded by fixed-end (SHO), active stretch (SSC), and preload-matched fixed-end (MATCHED) contractions. Before shortening, MATCHED and SCC had the same preload level (1% torque difference), similar joint position, and muscle fascicle lengths. Compared with SHO, shortening work was significantly (P < 0.001, partial η2 = 0.749) increased by 85% and 55% for SSC and MATCHED, respectively, with SSC shortening work being significantly higher than MATCHED (P = 0.016). This indicates that preload contributes by 65% to the overall SSC effect so that 35% needs to be referred to stretched-induced history-dependent mechanisms. In addition, SSC showed larger fascicle forces at the end of shortening (P < 0.001) and 20% less depressed isometric torque following shortening compared with MATCHED (P < 0.001). As potential decoupling effects by the series elastic element were controlled by matching the preload levels, we conclude that the difference between SSC and MATCHED is related to stretch-induced long-lasting history-dependent effects.NEW & NOTEWORTHY Using a torque-matched preload protocol, we found that 2/3 of the performance enhancement in muscle-tendon unit stretch-shortening cycles (SSCs) is caused by the increased preload level. The remaining 1/3 is owed to the long-lasting history-dependent effects triggered during the stretch in SSCs. This increased performance output is attributed to passive elastic structures within the contractile element that do not require additional muscle activation, therefore contributing to the higher efficiency of the neuromuscular system in SSCs.


Asunto(s)
Contracción Isométrica , Contracción Muscular , Músculo Esquelético , Tendones , Torque , Humanos , Masculino , Músculo Esquelético/fisiología , Tendones/fisiología , Adulto , Contracción Muscular/fisiología , Contracción Isométrica/fisiología , Adulto Joven , Femenino , Fenómenos Biomecánicos/fisiología
5.
Front Bioeng Biotechnol ; 12: 1388907, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903187

RESUMEN

Purpose: In this paper, we introduce a novel method for determining 3D deformations of the human tibialis anterior (TA) muscle during dynamic movements using 3D ultrasound. Materials and Methods: An existing automated 3D ultrasound system is used for data acquisition, which consists of three moveable axes, along which the probe can move. While the subjects perform continuous plantar- and dorsiflexion movements in two different controlled velocities, the ultrasound probe sweeps cyclically from the ankle to the knee along the anterior shin. The ankle joint angle can be determined using reflective motion capture markers. Since we considered the movement direction of the foot, i.e., active or passive TA, four conditions occur: slow active, slow passive, fast active, fast passive. By employing an algorithm which defines ankle joint angle intervals, i.e., intervals of range of motion (ROM), 3D images of the volumes during movement can be reconstructed. Results: We found constant muscle volumes between different muscle lengths, i.e., ROM intervals. The results show an increase in mean cross-sectional area (CSA) for TA muscle shortening. Furthermore, a shift in maximum CSA towards the proximal side of the muscle could be observed for muscle shortening. We found significantly different maximum CSA values between the fast active and all other conditions, which might be caused by higher muscle activation due to the faster velocity. Conclusion: In summary, we present a method for determining muscle volume deformation during dynamic contraction using ultrasound, which will enable future empirical studies and 3D computational models of skeletal muscles.

6.
Biol Open ; 13(7)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38818878

RESUMEN

Muscles and muscle fibers are volume-constant constructs that deform when contracted and develop internal pressures. However, muscles embedded in hydrostatic skeletons are also exposed to external pressures generated by their activity. For two examples, the pressure generation in spiders and in annelids, we used simplified biomechanical models to demonstrate that high intracellular pressures diminishing the resulting tensile stress of the muscle fibers are avoided in the hydrostatic skeleton. The findings are relevant for a better understanding of the design and functionality of biological hydrostatic skeletons.


Asunto(s)
Presión Hidrostática , Animales , Fenómenos Biomecánicos , Músculos/fisiología , Arañas/fisiología , Modelos Biológicos
7.
J Biomech ; 168: 112134, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38723428

RESUMEN

Connective tissues can be recognized as an important structural support element in muscles. Recent studies have also highlighted its importance in active force generation and transmission between muscles, particularly through the epimysium. In the present study, we aimed to investigate the impact of the endomysium, the connective tissue surrounding muscle fibers, on both passive and active force production. Pairs of skeletal muscle fibers were extracted from the extensor digitorum longus muscles of rats and, after chemical skinning, their passive and active force-length relationships were measured under two conditions: (i) with the endomysium between muscle fibers intact, and (ii) after its dissection. We found that the dissection of the endomysium caused force to significantly decrease in both active (by 22.2 % when normalized to the maximum isometric force; p < 0.001) and passive conditions (by 25.9 % when normalized to the maximum isometric force; p = 0.034). These findings indicate that the absence of endomysium compromises muscle fiber's not only passive but also active force production. This effect may be attributed to increased heterogeneity in sarcomere lengths, enhanced lattice spacing between myofilaments, or a diminished role of trans-sarcolemmal proteins due to dissecting the endomysium. Future investigations into the underlying mechanisms and their implications for various extracellular matrix-related diseases are warranted.


Asunto(s)
Fibras Musculares Esqueléticas , Animales , Ratas , Fibras Musculares Esqueléticas/fisiología , Ratas Wistar , Tejido Conectivo/fisiología , Sarcómeros/fisiología , Masculino , Músculo Esquelético/fisiología , Fenómenos Biomecánicos , Contracción Isométrica/fisiología , Contracción Muscular/fisiología
8.
J Biomech ; 168: 112107, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677029

RESUMEN

As part of the digestive system, the stomach plays a crucial role in the health and well-being of an organism. It produces acids and performs contractions that initiate the digestive process and begin the break-up of ingested food. Therefore, its mechanical properties are of interest. This study includes a detailed investigation of strains in the porcine stomach wall during passive organ filling. In addition, the observed strains were applied to tissue samples subjected to biaxial tensile tests. The results show inhomogeneous strains during filling, which tend to be higher in the circumferential direction (antrum: 13.2%, corpus: 22.0%, fundus: 67.8%), compared to the longitudinal direction (antrum: 4.8%, corpus: 24.7%, fundus: 50.0%) at a maximum filling of 3500 ml. Consequently, the fundus region experienced the greatest strain. In the biaxial tensile experiments, the corpus region appeared to be the stiffest, reaching nominal stress values above 400 kPa in the circumferential direction, whereas the other regions only reached stress levels of below 50 kPa in both directions for the investigated stretch range. Our findings gain new insight into stomach mechanics and provide valuable data for the development and validation of computational stomach models.


Asunto(s)
Estómago , Estrés Mecánico , Animales , Estómago/fisiología , Porcinos , Resistencia a la Tracción/fisiología , Fenómenos Biomecánicos , Modelos Biológicos
9.
Artículo en Inglés | MEDLINE | ID: mdl-38530501

RESUMEN

Architectural parameters of skeletal muscle such as pennation angle provide valuable information on muscle function, since they can be related to the muscle force generating capacity, fiber packing, and contraction velocity. In this paper, we introduce a 3D ultrasound-based workflow for determining 3D fascicle orientations of skeletal muscles. We used a custom-designed automated motor driven 3D ultrasound scanning system for obtaining 3D ultrasound images. From these, we applied a custom-developed multiscale-vessel enhancement filter-based fascicle detection algorithm and determined muscle volume and pennation angle. We conducted trials on a phantom and on the human tibialis anterior (TA) muscle of 10 healthy subjects in plantarflexion (157 ± 7 ∘ ), neutral position (109 ± 7 ∘ , corresponding to neutral standing), and one resting position in between (145 ± 6 ∘ ). The results of the phantom trials showed a high accuracy with a mean absolute error of 0.92 ± 0.59 ∘ . TA pennation angles were significantly different between all positions for the deep muscle compartment; for the superficial compartment, angles are significantly increased for neutral position compared to plantarflexion and resting position. Pennation angles were also significantly different between superficial and deep compartment. The results of constant muscle volumes across the 3 ankle joint angles indicate the suitability of the method for capturing 3D muscle geometry. Absolute pennation angles in our study were slightly lower than recent literature. Decreased pennation angles during plantarflexion are consistent with previous studies. The presented method demonstrates the possibility of determining 3D fascicle orientations of the TA muscle in vivo.

10.
J Mech Behav Biomed Mater ; 152: 106452, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38394765

RESUMEN

The function of a muscle is highly dependent on its architecture, which is characterized by the length, pennation, and curvature of the fascicles, and the geometry of the aponeuroses. During in vivo function, muscles regularly undergo changes in length, thereby altering their architecture. During passive muscle lengthening, fascicle length (FL) generally increases and the angle of fascicle pennation (FP) and the fascicle curvature (FC) decrease, while the aponeuroses increase in length but decrease in width. Muscles are differently structured, making their change during muscle lengthening complex and multifaceted. To obtain comprehensive data on architectural changes in muscles during passive length, the present study determined the three-dimensional fascicle geometry of rabbit M. gastrocnemius medialis (GM), M. gastrocnemius lateralis (GL), and M. plantaris (PLA). For this purpose, the left and right legs of three rabbits were histologically fixed at targeted ankle joint angles of 95° (short muscle length [SML]) and 60° (long muscle length [LML]), respectively, and the fascicles were tracked by manual three-dimensional digitization. In a second set of experiments, the GM aponeurosis dimensions of ten legs from five rabbits were determined at varying muscle lengths via optical marker tracking. The GM consisted of a uni-pennated compartment, whereas the GL and PLA contained multiple compartments of differently pennated fascicles. In the LML compared to the SML, the GM, GL, and PLA had on average a 41%, 29%, and 41% increased fascicle length, and a 30%, 25%, and 33% decrease in fascicle pennation and a 32%, 11%, and 35% decrease in fascicle curvature, respectively. Architectural properties were also differentiated among the different compartments of the PLA and GL, allowing for a more detailed description of their fascicle structure and changes. It was shown that the compartments change differently with muscle length. It was also shown that for each degree of ankle joint angle reduction, the proximal GM aponeurosis length increased by 0.11%, the aponeurosis width decreased by 0.22%, and the area was decreased by 0.20%. The data provided improve our understanding of muscles and can be used to develop and validate muscle models.


Asunto(s)
Aponeurosis , Procedimientos Ortopédicos , Animales , Conejos , Músculos , Articulación del Tobillo , Poliésteres
11.
Sci Rep ; 13(1): 19575, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37949892

RESUMEN

In legged locomotion, muscles undergo damped oscillations in response to the leg contacting the ground (an impact). How muscle oscillates varies depending on the impact situation. We used a custom-made frame in which we clamped an isolated rat muscle (M. gastrocnemius medialis and lateralis: GAS) and dropped it from three different heights and onto two different ground materials. In fully activated GAS, the dominant eigenfrequencies were 163 Hz, 265 Hz, and 399 Hz, which were signficantly higher (p < 0.05) compared to the dominant eigenfrequencies in passive GAS: 139 Hz, 215 Hz, and 286 Hz. In general, neither changing the falling height nor ground material led to any significant eigenfrequency changes in active nor passive GAS, respectively. To trace the eigenfrequency values back to GAS stiffness values, we developed a 3DoF model. The model-predicted GAS muscle eigenfrequencies matched well with the experimental values and deviated by - 3.8%, 9.0%, and 4.3% from the passive GAS eigenfrequencies and by - 1.8%, 13.3%, and - 1.5% from the active GAS eigenfrequencies. Differences between the frequencies found for active and passive muscle impact situations are dominantly due to the attachment of myosin heads to actin.


Asunto(s)
Locomoción , Músculo Esquelético , Ratas , Animales , Músculo Esquelético/fisiología , Locomoción/fisiología
13.
Front Bioeng Biotechnol ; 11: 1143926, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180043

RESUMEN

Musculoskeletal disorders (MSD) are a widespread problem, often regarding the lumbar region. Exoskeletons designed to support the lower back could be used in physically demanding professions with the intention of reducing the strain on the musculoskeletal system, e.g., by lowering task-related muscle activation. The present study aims to investigate the effect of an active exoskeleton on back muscle activity when lifting weights. Within the framework of the study, 14 subjects were asked to lift a 15 kg box with and without an active exoskeleton which allows the adjustment of different levels of support, while the activity of their M. erector spinae (MES) was measured using surface electromyography. Additionally, the subjects were asked about their overall rating of perceived exertion (RPE) during lifting under various conditions. Using the exoskeleton with the maximum level of support, the muscle activity was significantly lower than without exoskeleton. A significant correlation was found between the exoskeleton's support level and the reduction of MES activity. The higher the support level, the lower the observed muscle activity. Furthermore, when lifting with the maximum level of support, RPE was found to be significantly lower than without exoskeleton too. A reduction in the MES activity indicates actual support for the movement task and might indicate lower compression forces in the lumbar region. It is concluded that the active exoskeleton supports people noticeably when lifting heavy weights. Exoskeletons seem to be a powerful tool for reducing load during physically demanding jobs and thus, their use might be helpful in lowering the risk of MSD.

14.
Front Bioeng Biotechnol ; 11: 1150170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214305

RESUMEN

Neuromuscular control loops feature substantial communication delays, but mammals run robustly even in the most adverse conditions. In vivo experiments and computer simulation results suggest that muscles' preflex-an immediate mechanical response to a perturbation-could be the critical contributor. Muscle preflexes act within a few milliseconds, an order of magnitude faster than neural reflexes. Their short-lasting action makes mechanical preflexes hard to quantify in vivo. Muscle models, on the other hand, require further improvement of their prediction accuracy during the non-standard conditions of perturbed locomotion. Our study aims to quantify the mechanical work done by muscles during the preflex phase (preflex work) and test their mechanical force modulation. We performed in vitro experiments with biological muscle fibers under physiological boundary conditions, which we determined in computer simulations of perturbed hopping. Our findings show that muscles initially resist impacts with a stereotypical stiffness response-identified as short-range stiffness-regardless of the exact perturbation condition. We then observe a velocity adaptation to the force related to the amount of perturbation similar to a damping response. The main contributor to the preflex work modulation is not the change in force due to a change in fiber stretch velocity (fiber damping characteristics) but the change in magnitude of the stretch due to the leg dynamics in the perturbed conditions. Our results confirm previous findings that muscle stiffness is activity-dependent and show that also damping characteristics are activity-dependent. These results indicate that neural control could tune the preflex properties of muscles in expectation of ground conditions leading to previously inexplicable neuromuscular adaptation speeds.

15.
J Mech Behav Biomed Mater ; 142: 105801, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37068433

RESUMEN

The stomach is a vital organ responsible for food storage, digestion, and transport. Stomach diseases are of great economic and medical importance and require a large number of bariatric surgeries every year. To improve medical interventions, in silico modeling of the gastrointestinal tract has gained popularity in recent years to study stomach functioning. Because of the great structural and nutritional similarity between the porcine and human stomach, the porcine stomach is a suitable surrogate for the development and validation of gastric models. This study presents a realistic 3D geometry model of the porcine stomach based on a photogrammetric reconstruction of a real organ. Layer thicknesses of the stomach wall's mucosa and tunica muscularis were determined by more than 1900 manual measurements at different locations. Layer thickness distributions show mean mucosal and muscle thicknesses of 2.29 ± 0.45 mm and 2.83 ± 0.99 mm, respectively. In general, layer thicknesses increase from fundus (mucosa: 1.82 ± 0.19 mm, muscle layer: 2.59 ± 0.32 mm) to antrum (mucosa: 2.69 ± 0.31 mm, muscle layer: 3.73 ± 1.05 mm). The analysis of stomach asymmetry with respect to an idealized symmetrical stomach model, an approach often used in the literature, revealed volumetric deviations of 45%, 15%, and 92% for the antrum, corpus, and fundus, respectively. The present work also suggests an algorithm for the computation of longitudinal and circumferential directions at local points. These directions are useful for the implementation of material anisotropy. In addition, we present data on the passive pressure-volume relationship of the organ and perform an exemplary finite-element simulation, where we demonstrate the applicability of the model. We encourage others to utilize the geometry model featuring profound asymmetry for future model-based investigations on stomach functioning.


Asunto(s)
Mucosa Gástrica , Estómago , Humanos , Animales , Porcinos , Estómago/fisiología , Músculos , Simulación por Computador , Algoritmos
16.
Sci Rep ; 13(1): 6588, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085664

RESUMEN

In vivo, the force-velocity relation (F-v-r) is typically derived from the torque-angular velocity relation (T-ω-r), which is subject to two factors that may influence resulting measurements: tendon compliance and preload prior to contraction. The in vivo plantar flexors' T-ω-r was determined during preloaded maximum voluntary shortening contractions at 0-200°/s. Additionally, we used a two factor block simulation study design to independently analyze the effects of preload and tendon compliance on the resulting T-ω-r. Therefore, we replicated the in vivo experiment using a Hill-type muscle model of the gastrocnemius medialis. The simulation results matched a key pattern observed in our recorded in vivo experimental data: during preloaded contractions, torque output of the muscle was increased when compared with non-preloaded contractions from literature. This effect increased with increasing contraction velocity and can be explained by a rapidly recoiling tendon, allowing the contractile element to contract more slowly, thus developing higher forces compared with non-preloaded contractions. Our simulation results also indicate that a more compliant tendon results in increased ankle joint torques. The simulation and the experimental data clearly show that the deduction of the in vivo F-v-r from the T-ω-r is compromised due to the two factors preloading and tendon compliance.


Asunto(s)
Músculo Esquelético , Tendones , Torque , Tendones/fisiología , Músculo Esquelético/fisiología , Contracción Muscular/fisiología , Articulación del Tobillo/fisiología , Contracción Isométrica/fisiología
17.
Comput Biol Med ; 153: 106488, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36592609

RESUMEN

The contraction activation of smooth muscle in the stomach wall (SW) is coordinated by slow electrical waves. The interstitial cells of Cajal (ICC), specialised pacemaker cells, initiate and propagate these slow waves. By establishing an electrically coupled network, each ICC adjusts its intrinsic pacing frequency to a single dominant frequency, to be a key aspect in modelling the electrophysiology of gastric tissue. In terms of modelling, additional fields associated with electrical activation, such as voltage-dependent calcium influx and the resulting deformation, have hardly been considered so far. Here we present a three-dimensional model of the electro-chemomechanical activation of gastric smooth muscle contractions. To reduce computational costs, an adaptive multi-scale discretisation strategy for the temporal resolution of the electric field is used. The model incorporates a biophysically based model of gastric ICC pacemaker activity that aims to simulate stable entrainment and physiological conduction velocities of the electrical slow waves. Together with the simulation of concomitant gastric contractions and the inclusion of a mechanical feedback mechanism, the model is used to study dysrhythmias of gastric slow waves induced by abnormal stretching of the antral SW. The model is able to predict the formation of stretch-induced gastric arrhythmias, such as the emergence of an ectopic pacemaker in the gastric antrum. The results show that the ectopic event is accompanied by smooth muscle contraction and, although it disrupts the normal propagation pattern of gastric slow electrical waves, it can also catalyse the process of handling indigestible materials that might otherwise injure the gastric SW.


Asunto(s)
Células Intersticiales de Cajal , Estómago , Estómago/fisiología , Músculo Liso/fisiología , Contracción Muscular/fisiología , Calcio , Células Intersticiales de Cajal/fisiología
18.
Biomech Model Mechanobiol ; 22(5): 1499-1514, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36550242

RESUMEN

In this work, a three-dimensional model was developed to describe the passive mechanical behaviour of anisotropic skeletal muscle tissue. To validate the model, orientation-dependent axial ([Formula: see text], [Formula: see text], [Formula: see text]) and semi-confined compression experiments (mode I, II, III) were performed on soleus muscle tissue from rabbits. In the latter experiments, specimen deformation is prescribed in the loading direction and prevented in an additional spatial direction, fibre compression at [Formula: see text] (mode I), fibre elongation at [Formula: see text] (mode II) and a neutral state of the fibres at [Formula: see text] where their length is kept constant (mode III). Overall, the model can adequately describe the mechanical behaviour with a relatively small number of model parameters. The stiffest tissue response during orientation-dependent axial compression ([Formula: see text] kPa) occurs when the fibres are oriented perpendicular to the loading direction ([Formula: see text]) and are thus stretched during loading. Semi-confined compression experiments yielded the stiffest tissue ([Formula: see text] kPa) in mode II when the muscle fibres are stretched. The extensive data set collected in this study allows to study the different error measures depending on the deformation state or the combination of deformation states.


Asunto(s)
Fibras Musculares Esqueléticas , Músculo Esquelético , Animales , Conejos , Estrés Mecánico , Fenómenos Biomecánicos , Músculo Esquelético/fisiología , Presión
19.
Ann Biomed Eng ; 51(4): 771-782, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36224484

RESUMEN

Occupants exposed to low or moderate crash events can already suffer from whiplash-associated disorders leading to severe and long-lasting symptoms. However, the underlying injury mechanisms and the role of muscle activity are not fully clear. Potential increases in injury risk of non-nominal postures, i.e., rotated head, cannot be evaluated in detail due to the lack of experimental data. Examining changes in neck muscle activity to hold and stabilize the head in a rotated position during pre-crash scenarios might provide a deeper understanding of muscle reflex contributions and injury mechanisms. In this study, the influence of two different head postures (nominal vs. rotation of the head by about 63 ± 9° to the right) on neck muscle activity and head kinematics was investigated in simulated braking experiments inside a driving simulator. The braking scenario was implemented by visualization of the virtual scene using head-mounted displays and a combined translational-rotational platform motion. Kinematics of seventeen healthy subjects was tracked using 3D motion capturing. Surface electromyography were used to quantify muscle activity of left and right sternocleidomastoideus (SCM) and trapezius (TRP) muscles. The results show clear evidence that rotated head postures affect the static as well as the dynamic behavior of muscle activity during the virtual braking event. With head turned to the right, the contralateral left muscles yielded higher base activation and delayed muscle onset times. In contrast, right muscles had much lower activations and showed no relevant changes in muscle activation between nominal and rotated head position. The observed delayed muscle onset times and increased asymmetrical muscle activation patterns in the rotated head position are assumed to affect injury mechanisms. This could explain the prevalence of rotated head postures during a crash reported by patients suffering from WAD. The results can be used for validating the active behavior of human body models in braking simulations with nominal and rotated head postures, and to gain a deeper understanding of neck injury mechanisms.


Asunto(s)
Conducción de Automóvil , Humanos , Fenómenos Biomecánicos , Músculos del Cuello/fisiología , Electromiografía/métodos , Postura/fisiología , Voluntarios , Cabeza/fisiología
20.
J R Soc Interface ; 19(197): 20220642, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36475390

RESUMEN

How myofilaments operate at short mammalian skeletal muscle lengths is unknown. A common assumption is that thick (myosin-containing) filaments get compressed at the Z-disc. We provide ultrastructural evidence of sarcomeres contracting down to 0.44 µm-approximately a quarter of thick filament resting length-in long-lasting contractions while apparently keeping a regular, parallel thick filament arrangement. Sarcomeres produced force at such extremely short lengths. Furthermore, sarcomeres adopted a bimodal length distribution with both modes below lengths where sarcomeres are expected to generate force in classic force-length measurements. Mammalian fibres did not restore resting length but remained short after deactivation, as previously reported for amphibian fibres, and showed increased forces during passive re-elongation. These findings are incompatible with viscoelastic thick filament compression but agree with predictions of a model incorporating thick filament sliding through the Z-disc. This more coherent picture of mechanical mammalian skeletal fibre functioning opens new perspectives on muscle physiology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA