Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(9): 1994-2011, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39168120

RESUMEN

Zinc and RING finger 3 (ZNRF3) is a negative-feedback regulator of Wnt/ß-catenin signaling, which plays an important role in human brain development. Although somatically frequently mutated in cancer, germline variants in ZNRF3 have not been established as causative for neurodevelopmental disorders (NDDs). We identified 12 individuals with ZNRF3 variants and various phenotypes via GeneMatcher/Decipher and evaluated genotype-phenotype correlation. We performed structural modeling and representative deleterious and control variants were assessed using in vitro transcriptional reporter assays with and without Wnt-ligand Wnt3a and/or Wnt-potentiator R-spondin (RSPO). Eight individuals harbored de novo missense variants and presented with NDD. We found missense variants associated with macrocephalic NDD to cluster in the RING ligase domain. Structural modeling predicted disruption of the ubiquitin ligase function likely compromising Wnt receptor turnover. Accordingly, the functional assays showed enhanced Wnt/ß-catenin signaling for these variants in a dominant negative manner. Contrarily, an individual with microcephalic NDD harbored a missense variant in the RSPO-binding domain predicted to disrupt binding affinity to RSPO and showed attenuated Wnt/ß-catenin signaling in the same assays. Additionally, four individuals harbored de novo truncating or de novo or inherited large in-frame deletion variants with non-NDD phenotypes, including heart, adrenal, or nephrotic problems. In contrast to NDD-associated missense variants, the effects on Wnt/ß-catenin signaling were comparable between the truncating variant and the empty vector and between benign variants and the wild type. In summary, we provide evidence for mirror brain size phenotypes caused by distinct pathomechanisms in Wnt/ß-catenin signaling through protein domain-specific deleterious ZNRF3 germline missense variants.


Asunto(s)
Encéfalo , Mutación de Línea Germinal , Trastornos del Neurodesarrollo , Fenotipo , Ubiquitina-Proteína Ligasas , Vía de Señalización Wnt , Humanos , Vía de Señalización Wnt/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Femenino , Masculino , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Niño , Preescolar , beta Catenina/genética , beta Catenina/metabolismo , Adolescente , Mutación Missense , Estudios de Asociación Genética , Dominios Proteicos
2.
Cell Rep ; 19(10): 1967-1976, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28591569

RESUMEN

Alzheimer's disease is characterized by intracerebral deposition of ß-amyloid (Aß). While Aß40 is the most abundant form, neurotoxicity is mainly mediated by Aß42. Sequential cleavage of amyloid precursor protein (APP) by ß- and γ-secretases gives rise to full-length Aß (Aß1-x) and N-terminally truncated Aß' (Aß11-x) whereas cleavage by α- and γ-secretases leads to the shorter p3 peptides (Aß17-x). We uncovered significantly higher ratios of 42- versus 40-ending variants for Aß and Aß' than for p3 secreted by mouse neurons and human induced pluripotent stem cell (iPSC)-derived neurons or produced in a cell-free γ-secretase assay with recombinant APP-CTFs. The 42:40 ratio was highest for Aß', followed by Aß and then p3. Mass spectrometry analysis of APP intracellular domains revealed differential processing of APP-C83, APP-C89, and APP-C99 by γ-secretase already at the ε-cleavage stage. This mechanistic insight could aid in developing substrate-targeted modulators of APP-C99 processing to specifically lower the Aß42:Aß40 ratio without compromising γ-secretase function.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Enfermedad de Alzheimer/patología , Animales , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Ratones , Ratones Endogámicos ICR , Neuronas/patología
4.
EMBO J ; 34(17): 2237-54, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26105073

RESUMEN

MicroRNAs (miRNAs) are important regulators of neuronal development, network connectivity, and synaptic plasticity. While many neuronal miRNAs were previously shown to modulate neuronal morphogenesis, little is known regarding the regulation of miRNA function. In a large-scale functional screen, we identified two novel regulators of neuronal miRNA function, Nova1 and Ncoa3. Both proteins are expressed in the nucleus and the cytoplasm of developing hippocampal neurons. We found that Nova1 and Ncoa3 stimulate miRNA function by different mechanisms that converge on Argonaute (Ago) proteins, core components of the miRNA-induced silencing complex (miRISC). While Nova1 physically interacts with Ago proteins, Ncoa3 selectively promotes the expression of Ago2 at the transcriptional level. We further show that Ncoa3 regulates dendritic complexity and dendritic spine maturation of hippocampal neurons in a miRNA-dependent fashion. Importantly, both the loss of miRNA activity and increased dendrite complexity upon Ncoa3 knockdown were rescued by Ago2 overexpression. Together, we uncovered two novel factors that control neuronal miRISC function at the level of Ago proteins, with possible implications for the regulation of synapse development and plasticity.


Asunto(s)
Proteínas Argonautas/biosíntesis , Regulación de la Expresión Génica/fisiología , MicroARNs/biosíntesis , Neuronas/metabolismo , Coactivador 3 de Receptor Nuclear/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Proteínas Argonautas/genética , Células HEK293 , Humanos , MicroARNs/genética , Antígeno Ventral Neuro-Oncológico , Neuronas/citología , Coactivador 3 de Receptor Nuclear/genética , Proteínas de Unión al ARN/genética , Ratas , Ratas Sprague-Dawley
5.
Cell Rep ; 5(6): 1536-51, 2013 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-24373285

RESUMEN

Alzheimer's disease (AD) is characterized by cerebral deposition of ß-amyloid (Aß) peptides, which are generated from amyloid precursor protein (APP) by ß- and γ-secretases. APP and the secretases are membrane associated, but whether membrane trafficking controls Aß levels is unclear. Here, we performed an RNAi screen of all human Rab-GTPases, which regulate membrane trafficking, complemented with a Rab-GTPase-activating protein screen, and present a road map of the membrane-trafficking events regulating Aß production. We identify Rab11 and Rab3 as key players. Although retromers and retromer-associated proteins control APP recycling, we show that Rab11 controlled ß-secretase endosomal recycling to the plasma membrane and thus affected Aß production. Exome sequencing revealed a significant genetic association of Rab11A with late-onset AD, and network analysis identified Rab11A and Rab11B as components of the late-onset AD risk network, suggesting a causal link between Rab11 and AD. Our results reveal trafficking pathways that regulate Aß levels and show how systems biology approaches can unravel the molecular complexity underlying AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/genética , Ácido Aspártico Endopeptidasas/metabolismo , Membrana Celular/metabolismo , Endosomas/metabolismo , Exoma , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Células HeLa , Humanos , Transporte de Proteínas , Proteolisis , ARN Interferente Pequeño/genética , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab3/genética , Proteínas de Unión al GTP rab3/metabolismo
6.
Curr Opin Genet Dev ; 21(4): 491-7, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21561760

RESUMEN

The regulation of synapse formation and plasticity in the developing and adult brain underlies a complex interplay of intrinsic genetic programs and extrinsic factors. Recent research identified microRNAs (miRNAs), a class of small non-coding RNAs, as a new functional layer in this regulatory network. Within only a few years, a network of synaptic miRNAs and their target genes has been extensively characterized, highlighting the importance of this mechanism for synapse development and physiology. Very recent data further provide insight into activity-dependent regulation of miRNAs, thereby connecting miRNAs with adaptive processes of neural circuits. First direct links between miRNA dysfunction and synaptic pathologies are emerging, raising the interest in these molecules as potential biomarkers and therapeutic targets in neurological disorders.


Asunto(s)
Encéfalo/metabolismo , MicroARNs/metabolismo , Sinapsis/metabolismo , Regiones no Traducidas 3' , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Humanos , MicroARNs/genética , ARN Pequeño no Traducido/metabolismo , Sinapsis/genética
7.
Nat Cell Biol ; 11(6): 705-16, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19465924

RESUMEN

The microRNA pathway has been implicated in the regulation of synaptic protein synthesis and ultimately in dendritic spine morphogenesis, a phenomenon associated with long-lasting forms of memory. However, the particular microRNAs (miRNAs) involved are largely unknown. Here we identify specific miRNAs that function at synapses to control dendritic spine structure by performing a functional screen. One of the identified miRNAs, miR-138, is highly enriched in the brain, localized within dendrites and negatively regulates the size of dendritic spines in rat hippocampal neurons. miR-138 controls the expression of acyl protein thioesterase 1 (APT1), an enzyme regulating the palmitoylation status of proteins that are known to function at the synapse, including the alpha(13) subunits of G proteins (Galpha(13)). RNA-interference-mediated knockdown of APT1 and the expression of membrane-localized Galpha(13) both suppress spine enlargement caused by inhibition of miR-138, suggesting that APT1-regulated depalmitoylation of Galpha(13) might be an important downstream event of miR-138 function. Our results uncover a previously unknown miRNA-dependent mechanism in neurons and demonstrate a previously unrecognized complexity of miRNA-dependent control of dendritic spine morphogenesis.


Asunto(s)
Espinas Dendríticas , MicroARNs/metabolismo , Sinapsis , Tioléster Hidrolasas/metabolismo , Animales , Secuencia de Bases , Línea Celular , Espinas Dendríticas/enzimología , Espinas Dendríticas/ultraestructura , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Perfilación de la Expresión Génica , Hipocampo/citología , Humanos , Lipoilación , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Datos de Secuencia Molecular , Morfogénesis , Neuronas/citología , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Receptores de Glutamato/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura , Tioléster Hidrolasas/antagonistas & inhibidores , Tioléster Hidrolasas/genética
8.
EMBO J ; 28(6): 697-710, 2009 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-19197241

RESUMEN

Neuronal activity orchestrates the proper development of the neuronal circuitry by regulating both transcriptional and post-transcriptional gene expression programmes. How these programmes are coordinated, however, is largely unknown. We found that the transcription of miR379-410, a large cluster of brain-specific microRNAs (miRNAs), is induced by increasing neuronal activity in primary rat neurons. Results from chromatin immunoprecipitation and luciferase reporter assays suggest that binding of the transcription factor myocyte enhancing factor 2 (Mef2) upstream of miR379-410 is necessary and sufficient for activity-dependent transcription of the cluster. Mef2-induced expression of at least three individual miRNAs of the miR379-410 cluster is required for activity-dependent dendritic outgrowth of hippocampal neurons. One of these miRNAs, the dendritic miR-134, promotes outgrowth by inhibiting translation of the mRNA encoding for the translational repressor Pumilio2. In summary, we have described a novel regulatory pathway that couples activity-dependent transcription to miRNA-dependent translational control of gene expression during neuronal development.


Asunto(s)
Dendritas/metabolismo , Proteínas de Dominio MADS/metabolismo , MicroARNs/genética , Familia de Multigenes , Factores Reguladores Miogénicos/metabolismo , Organogénesis , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Animales , Secuencia de Bases , Sitios de Unión , Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Humanos , Factores de Transcripción MEF2 , Datos de Secuencia Molecular , Proteínas de Unión al ARN/genética , Ratas , Ratas Sprague-Dawley
9.
Biochim Biophys Acta ; 1779(8): 471-8, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18194678

RESUMEN

The development and function of the nervous system is orchestrated by a plethora of gene regulatory mechanisms. MicroRNAs (miRNAs), an abundant class of small non-coding RNAs, are emerging as important post-transcriptional regulators of gene expression in the brain. MiRNAs function at all stages of neuronal development, ranging from the initial specification of neuronal cell types to the formation and plasticity of synaptic connections between individual neurons. Moreover, links between miRNA dysfunction and neurological diseases become more and more apparent. The study of this novel layer of gene regulation therefore promises to enrich our knowledge of brain function and pathology.


Asunto(s)
Encéfalo/metabolismo , MicroARNs/fisiología , Neuronas/fisiología , Animales , Axones/metabolismo , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encefalopatías/genética , Encefalopatías/metabolismo , Humanos , Plasticidad Neuronal
10.
J Comp Neurol ; 478(2): 176-88, 2004 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-15349978

RESUMEN

Animal models of focal ischemic infarcts reveal an impaired GABAergic (gamma-aminobutyric acid) neurotransmission. GABA, the main inhibitory neurotransmitter, is primarily taken up by specific sodium-dependent transporters. As these transporters play a crucial role in maintaining levels of GABA concentration, they may be functionally involved in ischemic processes. We investigated whether the mRNA and protein expression of GAT-1, the dominant neuronal GABA transporter, is altered after cortical infarct induced by photothrombosis in Wistar rats. In situ hybridization was performed to analyze GAT-1 mRNA-positive cells in cortical brain regions and the hippocampus. The lesion dramatically raised the number of GABA transporter mRNA-expressing cells in all investigated cortical regions. Double-labeling studies with a general neuronal marker and a marker for astrocytes revealed that cells expressing GAT-1 mRNA after photothrombosis are neurons. The mRNA expression pattern of all hippocampal subfields remained unchanged. In contrast, cortical GAT-1 protein density was only slightly affected and surprisingly in the opposite way. In the primary and secondary somatosensory cortex, density values were significantly reduced. Immunoreactivity was not altered in all investigated hippocampal areas. We found a marked discordance between the increased number of cells expressing GAT-1 mRNA in the cortex and the reduced tissue GAT-1 protein content. Focal brain ischemia obviously triggers mechanisms that interfere with GAT-1 transcriptional regulation and protein synthesis or turnover.


Asunto(s)
Encéfalo/metabolismo , Infarto Cerebral/metabolismo , Proteínas de Transporte de Membrana/biosíntesis , Neuronas/metabolismo , Animales , Infarto Cerebral/fisiopatología , Modelos Animales de Enfermedad , Proteínas Transportadoras de GABA en la Membrana Plasmática , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Hibridación in Situ , Masculino , ARN Mensajero/análisis , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA