Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Acoust Soc Am ; 151(4): 2391, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35461508

RESUMEN

Distortion product otoacoustic emissions (DPOAEs) offer an outcome measure to consider for clinical detection and monitoring outer hair cell dysfunction as a result of noise exposure. This investigation detailed DPOAE characteristics and behavioral hearing thresholds up to 20 kHz to identify promising metrics for early detection of cochlear dysfunction. In a sample of normal-hearing individuals with and without self-reported noise exposure, the DPOAE and hearing threshold measures, as assessed by two questions, were examined. The effects on various auditory measures in individuals aged 10-65 years old with clinically normal/near-normal hearing through 4 kHz were evaluated. Individuals reporting occupational noise exposures (n = 84) and recreational noise exposures (n = 46) were compared to age-matched nonexposed individuals. The hearing thresholds and DPOAE level, fine structure, and component characteristics for the full frequency bandwidth were examined. The data suggest that the DPOAE levels measured using a range of stimulus levels hold clinical utility while fine structure characteristics offer limited use. Under carefully calibrated conditions, the extension to frequencies beyond 8 kHz in combination with various stimulus levels holds clinical utility. Moreover, this work supports the potential utility of the distortion product place component level for revealing differences in cochlear function due to self-reported, casual noise exposure that are not observable in behavioral hearing thresholds.


Asunto(s)
Pruebas Auditivas , Emisiones Otoacústicas Espontáneas , Adolescente , Adulto , Anciano , Umbral Auditivo , Niño , Cóclea , Audición , Humanos , Persona de Mediana Edad , Autoinforme , Adulto Joven
2.
Hear Res ; 397: 107922, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32111404

RESUMEN

Extended high frequencies (EHF), above 8 kHz, represent a region of the human hearing spectrum that is generally ignored by clinicians and researchers alike. This article is a compilation of contributions that, together, make the case for an essential role of EHF in both normal hearing and auditory dysfunction. We start with the fundamentals of biological and acoustic determinism - humans have EHF hearing for a purpose, for example, the detection of prey, predators, and mates. EHF hearing may also provide a boost to speech perception in challenging conditions and its loss, conversely, might help explain difficulty with the same task. However, it could be that EHF are a marker for damage in the conventional frequency region that is more related to speech perception difficulties. Measurement of EHF hearing in concert with otoacoustic emissions could provide an early warning of age-related hearing loss. In early life, when EHF hearing sensitivity is optimal, we can use it for enhanced phonetic identification during language learning, but we are also susceptible to diseases that can prematurely damage it. EHF audiometry techniques and standardization are reviewed, providing evidence that they are reliable to measure and provide important information for early detection, monitoring and possible prevention of hearing loss in populations at-risk. To better understand the full contribution of EHF to human hearing, clinicians and researchers can contribute by including its measurement, along with measures of speech in noise and self-report of hearing difficulties and tinnitus in clinical evaluations and studies.


Asunto(s)
Audición , Percepción del Habla , Adulto , Audiometría de Tonos Puros , Umbral Auditivo , Niño , Pérdida Auditiva/diagnóstico , Humanos , Ruido
3.
J Assoc Res Otolaryngol ; 20(6): 529-552, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31673928

RESUMEN

The effects of middle-ear pathology on wideband acoustic immittance and reflectance at frequencies above 6-8 kHz have not been documented, nor has the effect of such pathologies on the time-domain reflectance. We describe an approach that utilizes sound frequencies as high as 20 kHz and quantifies reflectance in both the frequency and time domains. Experiments were performed with fresh normal human temporal bones before and after simulating various middle-ear pathologies, including malleus fixation, stapes fixation, and disarticulation. In addition to experimental data, computational modeling was used to obtain fitted parameter values of middle-ear elements that vary systematically due to the simulated pathologies and thus may have diagnostic implications. Our results demonstrate that the time-domain reflectance, which requires acoustic measurements at high frequencies, varies with middle-ear condition. Furthermore, the extended bandwidth frequency-domain reflectance data was used to estimate parameters in a simple model of the ear canal and middle ear that separates three major conductive pathologies from each other and from the normal state.


Asunto(s)
Pruebas de Impedancia Acústica , Conducto Auditivo Externo/fisiopatología , Oído Medio/fisiopatología , Estimulación Acústica , Simulación por Computador , Humanos , Hueso Temporal/fisiología
4.
J Acoust Soc Am ; 144(4): 2135, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30404523

RESUMEN

Evanescent waves emerge from a small sound source that radiates into a waveguide with a larger cross-sectional area, but unlike planar waves, do not propagate far from the source. Evanescent waves thus contaminate in-ear calibration of acoustic stimuli. Measurements with an otoacoustic-emission (OAE) probe inserted at the entrance of long tubes of various diameters show a decline in the evanescent wave with distance from the source when advancing a probe tube through the OAE probe and into the long tube. The amplitude of the evanescent pressure increases with frequency and depends strongly on the diameter of the long tube. Modifying the shape of the aperture of the probe's sound source, thus effectively enlarging its diameter and redirecting acoustic flow, greatly reduced evanescent waves. The reduction in evanescent-wave pressure was observed in calibration cavities used to determine the Thévenin-equivalent source pressure and impedance of the probe. Errors in source calibrations were considerably larger in the unmodified configuration. An alternative method is proposed for calculation of acoustic source parameters that models the evanescent-wave pressure and reduces its influence on the calculation. This reduction greatly improves the quality of source calibrations, which should improve the accuracy of ear-canal impedance measurements and related quantities.


Asunto(s)
Estimulación Acústica/métodos , Conducto Auditivo Externo/fisiología , Estimulación Acústica/instrumentación , Estimulación Acústica/normas , Simulación por Computador , Humanos , Sonido
5.
J Assoc Res Otolaryngol ; 19(4): 401-419, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30014309

RESUMEN

The cochlear microphonic (CM) results from the vector sum of outer hair cell transduction currents excited by a stimulus. The classical theory of CM generation-that the response measured at the round window is dominated by cellular sources located within the tail region of the basilar membrane (BM) excitation pattern-predicts that CM amplitude and phase vary little with stimulus frequency. Contrary to expectations, CM amplitude and phase-gradient delay measured in response to low-level tones in chinchillas demonstrate a striking, quasiperiodic pattern of spectral ripples, even at frequencies > 5 kHz, where interference with neurophonic potentials is unlikely. The spectral ripples were reduced in the presence of a moderate-level saturating tone at a nearby frequency. When converted to the time domain, only the delayed CM energy was diminished in the presence of the saturator. We hypothesize that the ripples represent an interference pattern produced by CM components with different phase gradients: an early-latency component originating within the tail region of the BM excitation and two delayed components that depend on active cochlear processing near the peak region of the traveling wave. Using time windowing, we show that the early, middle, and late components have delays corresponding to estimated middle-ear transmission, cochlear forward delays, and cochlear round-trip delays, respectively. By extending the classical model of CM generation to include mechanical and electrical irregularities, we propose that middle components are generated through a mechanism of "coherent summation" analogous to the production of reflection-source otoacoustic emissions (OAEs), while the late components arise through a process of internal cochlear reflection related to the generation of stimulus-frequency OAEs. Although early-latency components from the passive tail region typically dominate the round-window CM, at low stimulus levels, substantial contributions from components shaped by active cochlear processing provide a new avenue for improving CM measurements as assays of cochlear health.


Asunto(s)
Potenciales Microfónicos de la Cóclea/fisiología , Ventana Redonda/fisiología , Animales , Chinchilla , Emisiones Otoacústicas Espontáneas , Tiempo de Reacción
6.
J Assoc Res Otolaryngol ; 18(4): 529-542, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28432471

RESUMEN

The response of the inner ear is modulated by the middle ear muscle (MEM) and olivocochlear (OC) efferent systems. Both systems can be activated reflexively by acoustic stimuli delivered to one or both ears. The acoustic middle ear muscle reflex (MEMR) controls the transmission of acoustic signals through the middle ear, while reflex activation of the medial component of the olivocochlear system (the MOCR) modulates cochlear mechanics. The relative prominence of the two efferent systems varies widely between species. Measuring the effect of either of these systems can be confounded by simultaneously activating the other. We describe a simple, sensitive online method that can identify the effects both systems have on otoacoustic emissions (OAEs) evoked by transient stimuli such as clicks or tone pips (TEOAEs). The method detects directly in the time domain the changes in the stimulus and/or emission pressures caused by contralateral noise. Measurements in human participants are consistent with other reports that the threshold for MOCR activation is consistently lower than for MEMR. The method appears to control for drift and subject-generated noise well enough to avoid the need for post hoc processing, making it promising for application in animal experiments (even if awake) and in the hearing clinic.


Asunto(s)
Técnicas de Diagnóstico Otológico , Oído Medio/fisiología , Audición/fisiología , Reflejo Acústico , Nervio Vestibulococlear/fisiología , Adolescente , Femenino , Voluntarios Sanos , Humanos , Masculino , Adulto Joven
7.
Front Neurosci ; 11: 169, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28420953

RESUMEN

The cochlear microphonic (CM) is created primarily by the receptor currents of outer hair cells (OHCs) and may therefore be useful for identifying cochlear regions with impaired OHCs. However, the CM measured across the frequency range with round-window or ear-canal electrodes lacks place-specificity as it is dominated by cellular sources located most proximal to the recording site (e.g., at the cochlear base). To overcome this limitation, we extract the "residual" CM (rCM), defined as the complex difference between the CM measured with and without an additional tone (saturating tone, ST). If the ST saturates receptor currents near the peak of its excitation pattern, then the rCM should reflect the activity of OHCs in that region. To test this idea, we measured round-window CMs in chinchillas in response to low-level probe tones presented alone or with an ST ranging from 1 to 2.6 times the probe frequency. CMs were measured both before and after inducing a local impairment in cochlear function (a 4-kHz notch-type acoustic trauma). Following the acoustic trauma, little change was observed in the probe-alone CM. In contrast, rCMs were reduced in a frequency-specific manner. When shifts in rCM levels were plotted vs. the ST frequency, they matched well the frequency range of shifts in neural thresholds. These results suggest that rCMs originate near the cochlear place tuned to the ST frequency and thus can be used to assess OHC function in that region. Our interpretation of the data is supported by predictions of a simple phenomenological model of CM generation and two-tone interactions. The model indicates that the sensitivity of rCM to acoustic trauma is governed by changes in cochlear response at the ST tonotopic place rather than at the probe place. The model also suggests that a combination of CM and rCM measurements could be used to assess both the site and etiology of sensory hearing loss in clinical applications.

8.
J Assoc Res Otolaryngol ; 18(4): 543-553, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28303411

RESUMEN

Descending neural pathways in the mammalian auditory system are known to modulate the function of the peripheral auditory system. These pathways include the medial olivocochlear (MOC) efferent innervation to outer hair cells (OHCs) and the acoustic reflex pathways mediating middle ear muscle (MEM) contractions. Based on measurements in humans (Marks and Siegel, companion paper), we applied a sensitive method to attempt to differentiate MEM and MOC reflexes using contralateral acoustic stimulation in mice under different levels of anesthesia. Separation of these effects is based on the knowledge that OHC-generated transient evoked otoacoustic emissions (TEOAE) are delayed relative to the stimulus, and that the MOC reflex affects the emission through its innervation of OHC. In contrast, the MEM-mediated changes in middle ear reflectance alter both the stimulus (with a short delay) and the emission. Using this approach, time averages to transient stimuli were evaluated to determine if thresholds for a contralateral effect on the delayed emission, indicating potential MOC activation, could be observed in the absence of a change in the stimulus pressure. This outcome was not observed in the majority of cases. There were also no statistically significant differences between MEM and putative MOC thresholds, and variability was high for both thresholds regardless of anesthesia level. Since the two reflex pathways could not be differentiated on the basis of activation thresholds, it was concluded that the MEM reflex dominates changes in TEOAEs induced by contralateral noise. This result complicates the identification of purely MOC-induced changes on OAEs in mice unless the MEM reflex is inactivated surgically or pharmacologically.


Asunto(s)
Técnicas de Diagnóstico Otológico , Oído Medio/fisiología , Audición/fisiología , Reflejo Acústico , Nervio Vestibulococlear/fisiología , Animales , Femenino , Masculino , Ratones , Ruido
9.
J Assoc Res Otolaryngol ; 16(3): 317-29, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25813430

RESUMEN

Stimulus-frequency otoacoustic emissions (SFOAEs) appear to be well suited for assessing frequency selectivity because, at least on theoretical grounds, they originate over a restricted region of the cochlea near the characteristic place of the evoking tone. In support of this view, we previously found good agreement between SFOAE suppression tuning curves (SF-STCs) and a control measure of frequency selectivity (compound action potential suppression tuning curves (CAP-STC)) for frequencies above 3 kHz in chinchillas. For lower frequencies, however, SF-STCs and were over five times broader than the CAP-STCs and demonstrated more high-pass rather than narrow band-pass filter characteristics. Here, we test the hypothesis that the broad tuning of low-frequency SF-STCs is because emissions originate over a broad region of the cochlea extending basal to the characteristic place of the evoking tone. We removed contributions of the hypothesized basally located SFOAE sources by either pre-suppressing them with a high-frequency interference tone (IT; 4.2, 6.2, or 9.2 kHz at 75 dB sound pressure level (SPL)) or by inducing acoustic trauma at high frequencies (exposures to 8, 5, and lastly 3-kHz tones at 110-115 dB SPL). The 1-kHz SF-STCs and CAP-STCs were measured for baseline, IT present and following the acoustic trauma conditions in anesthetized chinchillas. The IT and acoustic trauma affected SF-STCs in an almost indistinguishable way. The SF-STCs changed progressively from a broad high-pass to narrow band-pass shape as the frequency of the IT was lowered and for subsequent exposures to lower-frequency tones. Both results were in agreement with the "basal sources" hypothesis. In contrast, CAP-STCs were not changed by either manipulation, indicating that neither the IT nor acoustic trauma affected the 1-kHz characteristic place. Thus, unlike CAPs, SFOAEs cannot be considered as a place-specific measure of cochlear function at low frequencies, at least in chinchillas.


Asunto(s)
Estimulación Acústica , Emisiones Otoacústicas Espontáneas , Potenciales de Acción , Animales , Chinchilla , Cóclea/fisiología , Masculino
10.
Int J Audiol ; 54(2): 96-105, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25290042

RESUMEN

OBJECTIVE: Otoacoustic emissions (OAEs) can provide useful measures of tuning of auditory filters. We previously established that stimulus-frequency (SF) OAE suppression tuning curves (STCs) reflect major features of behavioral tuning (psychophysical tuning curves, PTCs) in normally-hearing listeners. Here, we aim to evaluate whether SFOAE STCs reflect changes in PTC tuning in cases of abnormal hearing. DESIGN: PTCs and SFOAE STCs were obtained at 1 kHz and/or 4 kHz probe frequencies. For exploratory purposes, we collected SFOAEs measured across a wide frequency range and contrasted them to commonly measured distortion product (DP) OAEs. STUDY SAMPLE: Thirteen listeners with varying degrees of sensorineural hearing loss. RESULTS: Except for a few listeners with the most hearing loss, the listeners had normal/nearly normal PTCs. However, attempts to record SFOAE STCs in hearing-impaired listeners were challenging and sometimes unsuccessful due to the high level of noise at the SFOAE frequency, which is not a factor for DPOAEs. In cases of successful measurements of SFOAE STCs there was a large variability in agreement between SFOAE STC and PTC tuning. CONCLUSIONS: These results indicate that SFOAE STCs cannot substitute for PTCs in cases of abnormal hearing, at least with the paradigm adopted in this study.


Asunto(s)
Estimulación Acústica/métodos , Cóclea/fisiopatología , Pérdida Auditiva Sensorineural/fisiopatología , Emisiones Otoacústicas Espontáneas/fisiología , Adulto , Anciano , Percepción Auditiva , Umbral Auditivo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ruido , Enmascaramiento Perceptual/fisiología , Psicofísica
11.
J Acoust Soc Am ; 136(4): 1768-87, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25324079

RESUMEN

The reliability of nine measures of the stimulus level in the human ear canal was compared by measuring the sensitivity of behavioral hearing thresholds to changes in the depth of insertion of an otoacoustic emission probe. Four measures were the ear-canal pressure, the eardrum pressure estimated from it and the pressure measured in an ear simulator with and without compensation for insertion depth. The remaining five quantities were derived from the ear-canal pressure and the Thévenin-equivalent source characteristics of the probe: Forward pressure, initial forward pressure, the pressure transmitted into the middle ear, eardrum sound pressure estimated by summing the magnitudes of the forward and reverse pressure (integrated pressure) and absorbed power. Two sets of behavioral thresholds were measured in 26 subjects from 0.125 to 20 kHz, with the probe inserted at relatively deep and shallow positions in the ear canal. The greatest dependence on insertion depth was for transmitted pressure and absorbed power. The measures with the least dependence on insertion depth throughout the frequency range (best performance) included the depth-compensated simulator, eardrum, forward, and integrated pressures. Among these, forward pressure is advantageous because it quantifies stimulus phase.


Asunto(s)
Estimulación Acústica/métodos , Umbral Auditivo , Conducto Auditivo Externo/fisiología , Emisiones Otoacústicas Espontáneas , Estimulación Acústica/instrumentación , Estimulación Acústica/normas , Acústica , Adulto , Calibración , Diseño de Equipo , Femenino , Humanos , Masculino , Presión , Procesamiento de Señales Asistido por Computador , Sonido , Adulto Joven
12.
J Assoc Res Otolaryngol ; 15(6): 883-96, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25230801

RESUMEN

It has been suggested that the tuning of the cochlear filters can be derived from measures of otoacoustic emissions (OAEs). Two approaches have been proposed to estimate cochlear frequency selectivity using OAEs evoked with a single tone (stimulus-frequency (SF)) OAEs: based on SFOAE group delays (SF-GDs) and on SFOAE suppression tuning curves (SF-STCs). The aim of this study was to evaluate whether either SF-GDs or SF-STCs obtained with low probe levels (30 dB SPL) correlate with more direct measures of cochlear tuning (compound action potential suppression tuning curves (CAP-STCs)) in chinchillas. The SFOAE-based estimates of tuning covaried with CAP-STCs tuning for >3 kHz probe frequencies, indicating that these measures are related to cochlear frequency selectivity. However, the relationship may be too weak to predict tuning with either SFOAE method in an individual. The SF-GD prediction of tuning was sharper than CAP-STC tuning. On the other hand, SF-STCs were consistently broader than CAP-STCs implying that SFOAEs may have less restricted region of generation in the cochlea than CAPs. Inclusion of <3 kHz data in a statistical model resulted in no significant or borderline significant covariation among the three methods: neither SFOAE test appears to reliably estimate an individual's CAP-STC tuning at low-frequencies. At the group level, SF-GDs and CAP-STCs showed similar tuning at low frequencies, while SF-STCs were over five times broader than the CAP-STCs indicating that low-frequency SFOAE may originate over a very broad region of the cochlea extending ≥5 mm basal to the tonotopic place of the probe.


Asunto(s)
Cóclea/fisiología , Acústica , Animales , Chinchilla , Masculino , Emisiones Otoacústicas Espontáneas
13.
J Neurosci ; 34(31): 10325-38, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-25080593

RESUMEN

α-Tectorin (TECTA), ß-tectorin (TECTB), and carcinoembryonic antigen-related cell adhesion molecule 16 (CEACAM) are secreted glycoproteins that are present in the tectorial membrane (TM), an extracellular structure overlying the hearing organ of the inner ear, the organ of Corti. Previous studies have shown that TECTA and TECTB are both required for formation of the striated-sheet matrix within which collagen fibrils of the TM are imbedded and that CEACAM16 interacts with TECTA. To learn more about the structural and functional significance of CEACAM16, we created a Ceacam16-null mutant mouse. In the absence of CEACAM16, TECTB levels are reduced, a clearly defined striated-sheet matrix does not develop, and Hensen's stripe, a prominent feature in the basal two-thirds of the TM in WT mice, is absent. CEACAM16 is also shown to interact with TECTB, indicating that it may stabilize interactions between TECTA and TECTB. Although brain-stem evoked responses and distortion product otoacoustic emissions are, for most frequencies, normal in young mice lacking CEACAM16, stimulus-frequency and transiently evoked emissions are larger. We also observed spontaneous otoacoustic emissions (SOAEs) in 70% of the homozygous mice. This incidence is remarkable considering that <3% of WT controls have SOAEs. The predominance of SOAEs >15 kHz correlates with the loss of Hensen's stripe. Results from mice lacking CEACAM16 are consistent with the idea that the organ of Corti evolved to maximize the gain of the cochlear amplifier while preventing large oscillations. Changes in TM structure appear to influence the balance between energy generation and dissipation such that the system becomes unstable.


Asunto(s)
Moléculas de Adhesión Celular/deficiencia , Proteínas de la Matriz Extracelular/metabolismo , Órgano Espiral/citología , Emisiones Otoacústicas Espontáneas/fisiología , Membrana Tectoria/fisiología , Estimulación Acústica , Animales , Moléculas de Adhesión Celular/genética , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Inmunoprecipitación , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Transmisión , Emisiones Otoacústicas Espontáneas/genética , Técnicas de Placa-Clamp , Membrana Tectoria/ultraestructura , beta-Galactosidasa/metabolismo
14.
J Acoust Soc Am ; 135(1): 287-99, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24437769

RESUMEN

Distortion-product otoacoustic emission (DPOAE) fine structure and component characteristics are reported between 0.75 and 16 kHz in 356 clinically normal hearing human subjects ages 10 to 65 yr. Stimulus tones at 55/40, 65/55, and 75/75 dB SPL were delivered using custom designed drivers and a calibration method that compensated for the depth of insertion of the otoacoustic emission (OAE) probe in the ear canal. DPOAE fine structure depth and spacing were found to be consistent with previous reports with depth varying between 3 and 7 dB and average spacing ratios (f/Δf) between 15 and 25 depending on stimulus level and frequency. In general, fine structure depth increased with increasing frequency, likely due to a diminishing difference between DPOAE component levels. Fine structure spacing became wider with increasing age above 8 kHz. DPOAE components were extracted using the inverse fast Fourier transform method, adhering to a strict signal to noise ratio criterion for clearer interpretation. Component data from four age groups between 18 and 55 yr old were available for the stimulus levels of 75/75 dB SPL. The age groups could be differentiated with greater than 90% accuracy when using the level of the component presumed to originate from the DPOAE characteristic frequency place. This accuracy held even for frequencies at and below 4 kHz where the age groups exhibited similar average hearing thresholds.


Asunto(s)
Estimulación Acústica/métodos , Cóclea/fisiología , Emisiones Otoacústicas Espontáneas , Acústica , Adolescente , Adulto , Factores de Edad , Anciano , Vías Auditivas/fisiología , Umbral Auditivo , Niño , Femenino , Análisis de Fourier , Humanos , Masculino , Persona de Mediana Edad , Valores de Referencia , Adulto Joven
15.
J Assoc Res Otolaryngol ; 14(6): 843-62, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24013802

RESUMEN

As shown by the work of Kemp and Chum in 1980, stimulus-frequency otoacoustic emission suppression tuning curves (SFOAE STCs) have potential to objectively estimate behaviorally measured tuning curves. To date, this potential has not been tested. This study aims to do so by comparing SFOAE STCs and behavioral measures of tuning (simultaneous masking psychophysical tuning curves, PTCs) in 10 normal-hearing listeners for frequency ranges centered around 1,000 and 4,000 Hz at low probe levels. Additionally, SFOAE STCs were collected for varying conditions (probe level and suppression criterion) to identify the optimal parameters for comparison with behavioral data and to evaluate how these conditions affect the features of SFOAE STCs. SFOAE STCs qualitatively resembled PTCs: they demonstrated band-pass characteristics and asymmetric shapes with steeper high-frequency sides than low, but unlike PTCs they were consistently tuned to frequencies just above the probe frequency. When averaged across subjects the shapes of SFOAE STCs and PTCs showed agreement for most recording conditions, suggesting that PTCs are predominantly shaped by the frequency-selective filtering and suppressive effects of the cochlea. Individual SFOAE STCs often demonstrated irregular shapes (e.g., "double-tips"), particularly for the 1,000-Hz probe, which were not observed for the same subject's PTC. These results show the limited utility of SFOAE STCs to assess tuning in an individual. The irregularly shaped SFOAE STCs may be attributed to contributions from SFOAE sources distributed over a region of the basilar membrane extending beyond the probe characteristic place, as suggested by a repeatable pattern of SFOAE residual phase shifts observed in individual data.


Asunto(s)
Cóclea/fisiología , Emisiones Otoacústicas Espontáneas/fisiología , Estimulación Acústica , Adulto , Umbral Auditivo , Femenino , Humanos , Masculino , Enmascaramiento Perceptual , Psicofísica , Reproducibilidad de los Resultados
16.
Int J Audiol ; 51(4): 317-25, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22107443

RESUMEN

OBJECTIVE: The objective of this study was to compare two recently proposed methods for fast measurements of psychophysical tuning curves (fast-PTCs) in terms of resulting tuning curve features and training effects. DESIGN: Fast-PTCs with swept-noise (SN) and gated-noise (GN) maskers were measured at signal frequencies of 500, 1000, 2000, and 4000 Hz. The effect of amplitude modulating the signal in the GN condition was evaluated. Two PTC runs were obtained for each condition to assess training effects. STUDY SAMPLE: Eight normally-hearing young adults participated in the study. RESULTS: The SN and GN methods resulted in similar estimates of frequency selectivity when training effects were considered. Amplitude modulating the tone in the GN method reduced the effect of training. On average, SN-PTCs were most repeatable compared to the two other methods and they were not affected by training. Estimation of the shift in the PTC tip frequency was not affected by the measurement method or training effects. Fast-PTC methods resulted in similar estimates of tuning as compared to published notched-noise data. CONCLUSIONS: The SN method and the GN procedure with amplitude modulated signals allowed for time-efficient estimation of frequency selectivity that was unaffected by training.


Asunto(s)
Vías Auditivas/fisiología , Ruido/efectos adversos , Enmascaramiento Perceptual , Psicoacústica , Estimulación Acústica , Adulto , Análisis de Varianza , Audiometría de Tonos Puros , Percepción Auditiva , Umbral Auditivo , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Espectrografía del Sonido , Factores de Tiempo , Adulto Joven
17.
Hear Res ; 282(1-2): 161-6, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21907781

RESUMEN

Tamoxifen has been used extensively in the treatment of breast cancer and other neoplasms. In addition to its well-known action on estrogen receptors it is also known to acutely block chloride channels that participate in cell volume regulation. Tamoxifen's role in preventing cochlear outer hair cell (OHC) swelling in vitro suggested that OHC swelling noted following noise exposure could potentially be a therapeutic target for tamoxifen in its role as a chloride channel blocker to help prevent noise-induced hearing loss. To investigate this possibility, the effects of exposure to tamoxifen on physiologic measures of cochlear function in the presence and absence of subsequent noise exposure were studied. Male Mongolian gerbils (2-4 months old) were randomly assigned to different groups. Tamoxifen at ∼10 mg/kg was administered to one of the groups. Five hours later they were exposed to a one-third octave band of noise centered at 8 kHz in a sound-isolation chamber for 30 min at 108 dB SPL. Compound action potential (CAP) thresholds and distortion product otoacoustic emission (DPOAE) levels were measured 30-35 days following noise exposure. Tamoxifen administration did not produce any changes in CAP thresholds and DPOAE levels when administered by itself in the absence of noise. Tamoxifen causes a significant increase in CAP thresholds from 8 to 15 kHz following noise exposure compared to CAP thresholds in animals exposed to noise alone. No significant differences were seen in the DPOAE levels in the f(2) = 8-15 kHz frequency range where maximum noise-induced increases in CAP thresholds were seen. Contrary to our original expectation, it is concluded that tamoxifen potentiates the degree of damage to the cochlea resulting from noise exposure.


Asunto(s)
Cóclea/efectos de los fármacos , Pérdida Auditiva Provocada por Ruido/etiología , Ruido , Moduladores Selectivos de los Receptores de Estrógeno/toxicidad , Tamoxifeno/toxicidad , Animales , Umbral Auditivo/efectos de los fármacos , Cóclea/lesiones , Cóclea/fisiopatología , Potenciales Evocados/efectos de los fármacos , Gerbillinae , Pérdida Auditiva Provocada por Ruido/inducido químicamente , Pérdida Auditiva Provocada por Ruido/fisiopatología , Masculino , Emisiones Otoacústicas Espontáneas/efectos de los fármacos , Factores de Riesgo , Factores de Tiempo
18.
J Acoust Soc Am ; 129(2): 852-63, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21361443

RESUMEN

Some individuals complain of hearing difficulties in the presence of background noise even in the absence of clinically significant hearing loss (obscure auditory dysfunction). Previous evidence suggests that these listeners have impaired frequency resolution, but there has been no thorough characterization of auditory filter shapes in this population. Here, the filter shapes of adults (n = 14) who self-reported speech recognition problems in noise and performed poorly on a sentence-in-noise perception test despite having clinically normal audiograms were compared to those of controls (n = 10). The filter shapes were evaluated using a 2-kHz probe with a fixed level of 30, 40, or 50 dB sound pressure level (SPL) and notched-noise simultaneous maskers that were varied in level to determine the masker level necessary to just mask the probe. The filters of the impaired group were significantly wider than those of controls at all probe levels owing to an unusual broadening of the upper slope of the filter. In addition, absolute thresholds were statistically indistinguishable between the groups at the standard audiometric frequencies, but were elevated in the impaired listeners at higher frequencies. These results strengthen the idea that this population has a variety of hearing deficits that go undetected by standard audiometry.


Asunto(s)
Trastornos de la Audición/psicología , Ruido/efectos adversos , Enmascaramiento Perceptual , Inteligibilidad del Habla , Percepción del Habla , Estimulación Acústica , Adolescente , Adulto , Audiometría de Tonos Puros , Audiometría del Habla , Umbral Auditivo , Estudios de Casos y Controles , Comprensión , Trastornos de la Audición/clasificación , Humanos , Persona de Mediana Edad , Patrones de Reconocimiento Fisiológico , Detección de Señal Psicológica , Adulto Joven
19.
J Acoust Soc Am ; 125(6): 3733-41, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19507955

RESUMEN

The potential risk to hearing that mass-storage personal listening devices (PLDs) pose remains unclear. Previous research in this area has either focused on maximum outputs of these devices or on ear-canal measurements of listening levels that could not be compared to standards of occupational noise exposure. The purpose of this study was to compare two standard measurement protocols [ISO 11904-1 (2002), Switzerland; ISO 11904-2 (2004), Switzerland] for the measurement of preferred listening levels of PLD. Noise measurements, behavioral thresholds, and oral interviews were obtained from 30 (18-30 years) PLD users. Preferred listening levels for self-selected music were determined in quiet and background noise using a probe microphone, as well as in the DB-100 ear simulator mounted in KEMAR. The ear-canal measurements were compensated for diffuse-field. Only one of the subjects was found to be listening at hazardous levels once their reported daily usage was accounted for using industrial workplace standards. The variance across subjects was the smallest in the ear-canal measurements that were compensated for diffuse-field equivalence [ISO 11904-1 (2002), Switzerland]. Seven subjects were found to be listening at levels above 85 dBA based on measurements obtained in the KEMAR and then compensated for diffuse-field equivalence.


Asunto(s)
Electrónica/instrumentación , Electrónica/métodos , Música , Adolescente , Adulto , Conducta , Comportamiento del Consumidor , Conducto Auditivo Externo , Femenino , Humanos , Masculino , Ruido , Ruido del Transporte , Psicofísica , Factores Sexuales , Adulto Joven
20.
J Acoust Soc Am ; 118(4): 2434-43, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16266165

RESUMEN

When stimulated by tones, the ear appears to emit tones of its own, stimulus-frequency otoacoustic emissions (SFOAEs). SFOAEs were measured in 17 chinchillas and their group delays were compared with a place map of basilar-membrane vibration group delays measured at the characteristic frequency. The map is based on Wiener-kernel analysis of responses to noise of auditory-nerve fibers corroborated by measurements of vibrations at several basilar-membrane sites. SFOAE group delays were similar to, or shorter than, basilar-membrane group delays for frequencies >4 kHz and <4 kHz, respectively. Such short delays contradict the generally accepted "theory of coherent reflection filtering" [Zweig and Shera, J. Acoust. Soc. Am. 98, 2018-2047 (1995)], which predicts that the group delays of SFOAEs evoked by low-level tones approximately equal twice the basilar-membrane group delays. The results for frequencies higher than 4 kHz are compatible with hypotheses of SFOAE propagation to the stapes via acoustic waves or fluid coupling, or via reverse basilar membrane traveling waves with speeds corresponding to the signal-front delays, rather than the group delays, of the forward waves. The results for frequencies lower than 4 kHz cannot be explained by hypotheses based on waves propagating to and from their characteristic places in the cochlea.


Asunto(s)
Cóclea/fisiología , Emisiones Otoacústicas Espontáneas/fisiología , Estimulación Acústica , Animales , Membrana Basilar/fisiología , Chinchilla , Modelos Biológicos , Factores de Tiempo , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...