Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Ann Rheum Dis ; 83(3): 360-371, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37932009

RESUMEN

OBJECTIVES: To evaluate the safety and efficacy of remibrutinib in patients with moderate-to-severe Sjögren's syndrome (SjS) in a phase 2 randomised, double-blind trial (NCT04035668; LOUiSSE (LOU064 in Sjögren's Syndrome) study). METHODS: Eligible patients fulfilling 2016 American College of Rheumatology/European League Against Rheumatism (EULAR) criteria for SjS, positive for anti-Ro/Sjögren's syndrome-related antigen A antibodies, with moderate-to-severe disease activity (EULAR Sjögren's Syndrome Disease Activity Index (ESSDAI) (based on weighted score) ≥ 5, EULAR Sjögren's Syndrome Patient Reported Index (ESSPRI) ≥ 5) received remibrutinib (100 mg) either one or two times a day, or placebo for the 24-week study treatment period. The primary endpoint was change from baseline in ESSDAI at week 24. Key secondary endpoints included change from baseline in ESSDAI over time, change from baseline in ESSPRI over time and safety of remibrutinib in SjS. Key exploratory endpoints included changes to the salivary flow rate, soluble biomarkers, blood transcriptomic and serum proteomic profiles. RESULTS: Remibrutinib significantly improved ESSDAI score in patients with SjS over 24 weeks compared with placebo (ΔESSDAI -2.86, p=0.003). No treatment effect was observed in ESSPRI score (ΔESSPRI 0.17, p=0.663). There was a trend towards improvement of unstimulated salivary flow with remibrutinib compared with placebo over 24 weeks. Remibrutinib had a favourable safety profile in patients with SjS over 24 weeks. Remibrutinib induced significant changes in gene expression in blood, and serum protein abundance compared with placebo. CONCLUSIONS: These data show preliminary efficacy and favourable safety of remibrutinib in a phase 2 trial for SjS.


Asunto(s)
Pirimidinas , Síndrome de Sjögren , Humanos , Síndrome de Sjögren/tratamiento farmacológico , Síndrome de Sjögren/complicaciones , Proteómica , Anticuerpos , Índice de Severidad de la Enfermedad
2.
RMD Open ; 9(2)2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37321668

RESUMEN

OBJECTIVES: Despite several effective targeted therapies, biomarkers that predict whether a patient with psoriatic arthritis (PsA) will respond to a particular treatment are currently lacking. METHODS: We analysed proteomics data from serum samples of nearly 2000 patients with PsA in placebo-controlled phase-III clinical trials of the interleukin-17 inhibitor secukinumab. To discover predictive biomarkers of clinical response, we used statistical learning with controlled feature selection. The top candidate was validated using an ELISA and was separately assessed in a trial of almost 800 patients with PsA treated with secukinumab or the tumour necrosis factor inhibitor adalimumab. RESULTS: Serum levels of beta-defensin 2 (BD-2) at baseline were found to be robustly associated with subsequent clinical response (eg, American College of Rheumatology definition of 20%, 50% and 70% improvement) to secukinumab, but not to placebo. This finding was validated in two independent clinical studies not used for discovery. Although BD-2 is known to be associated with psoriasis severity, the predictivity of BD-2 was independent of baseline Psoriasis Area and Severity Index. The association between BD-2 and response to secukinumab was observed as early as 4 weeks and maintained up to 52 weeks. BD-2 was also found to predict response to treatment with adalimumab. Unlike in PsA, BD-2 was not predictive of response to secukinumab in rheumatoid arthritis. CONCLUSIONS: In PsA, BD-2 at baseline is quantitatively associated with clinical response to secukinumab. Patients with high levels of BD-2 at baseline reach and sustain higher rates of clinical response after treatment with secukinumab.


Asunto(s)
Artritis Psoriásica , Psoriasis , beta-Defensinas , Humanos , Artritis Psoriásica/diagnóstico , Artritis Psoriásica/tratamiento farmacológico , Adalimumab/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Interleucina-17 , beta-Defensinas/uso terapéutico , Proteómica , Resultado del Tratamiento , Psoriasis/tratamiento farmacológico , Biomarcadores
3.
Cell Rep Med ; 4(3): 100983, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36948149

RESUMEN

Lilja et al.1 explore single-cell transcriptomes across multiple organs of mice with collagen-induced arthritis. They apply network analysis to prioritize functional pathways that support or suppress inflammation and integrate findings with tissue transcriptomics in human immune-mediated inflammatory diseases.


Asunto(s)
Artritis Experimental , Inflamación , Animales , Humanos , Inflamación/metabolismo , Artritis Experimental/metabolismo
4.
JCI Insight ; 7(21)2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36345939

RESUMEN

Lupus nephritis is a serious complication of systemic lupus erythematosus, mediated by IgG immune complex (IC) deposition in kidneys, with limited treatment options. Kidney macrophages are critical tissue sentinels that express IgG-binding Fcγ receptors (FcγRs), with previous studies identifying prenatally seeded resident macrophages as major IC responders. Using single-cell transcriptomic and spatial analyses in murine and human lupus nephritis, we sought to understand macrophage heterogeneity and subset-specific contributions in disease. In lupus nephritis, the cell fate trajectories of tissue-resident (TrMac) and monocyte-derived (MoMac) kidney macrophages were perturbed, with disease-associated transcriptional states indicating distinct pathogenic roles for TrMac and MoMac subsets. Lupus nephritis-associated MoMac subsets showed marked induction of FcγR response genes, avidly internalized circulating ICs, and presented IC-opsonized antigen. In contrast, lupus nephritis-associated TrMac subsets demonstrated limited IC uptake, but expressed monocyte chemoattractants, and their depletion attenuated monocyte recruitment to the kidney. TrMacs also produced B cell tissue niche factors, suggesting a role in supporting autoantibody-producing lymphoid aggregates. Extensive similarities were observed with human kidney macrophages, revealing cross-species transcriptional disruption in lupus nephritis. Overall, our study suggests a division of labor in the kidney macrophage response in lupus nephritis, with treatment implications - TrMacs orchestrate leukocyte recruitment while MoMacs take up and present IC antigen.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Ratones , Humanos , Animales , Macrófagos , Monocitos/patología , Receptores de IgG/genética , Inmunoglobulina G
5.
Cells ; 11(12)2022 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-35741037

RESUMEN

Signaling through the TNF-family receptor Fas/CD95 can trigger apoptosis or non-apoptotic cellular responses and is essential for protection from autoimmunity. Receptor clustering has been observed following interaction with Fas ligand (FasL), but the stoichiometry of Fas, particularly when triggered by membrane-bound FasL, the only form of FasL competent at inducing programmed cell death, is not known. Here we used super-resolution microscopy to study the behavior of single molecules of Fas/CD95 on the plasma membrane after interaction of Fas with FasL on planar lipid bilayers. We observed rapid formation of Fas protein superclusters containing more than 20 receptors after interactions with membrane-bound FasL. Fluorescence correlation imaging demonstrated recruitment of FADD dependent on an intact Fas death domain, with lipid raft association playing a secondary role. Flow-cytometric FRET analysis confirmed these results, and also showed that some Fas clustering can occur in the absence of FADD and caspase-8. Point mutations in the Fas death domain associated with autoimmune lymphoproliferative syndrome (ALPS) completely disrupted Fas reorganization and FADD recruitment, confirming structure-based predictions of the critical role that these residues play in Fas-Fas and Fas-FADD interactions. Finally, we showed that induction of apoptosis correlated with the ability to form superclusters and recruit FADD.


Asunto(s)
Apoptosis , Receptor fas , Apoptosis/fisiología , Análisis por Conglomerados , Proteína Ligando Fas/metabolismo , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Receptor fas/metabolismo
6.
J Clin Invest ; 132(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35289316

RESUMEN

Host defense and inflammation are regulated by the NF-κB essential modulator (NEMO), a scaffolding protein with a broad immune cell and tissue expression profile. Hypomorphic mutations in inhibitor of NF-κB kinase regulatory subunit gamma (IKBKG) encoding NEMO typically present with immunodeficiency. Here, we characterized a pediatric autoinflammatory syndrome in 3 unrelated male patients with distinct X-linked IKBKG germline mutations that led to overexpression of a NEMO protein isoform lacking the domain encoded by exon 5 (NEMO-Δex5). This isoform failed to associate with TANK binding kinase 1 (TBK1), and dermal fibroblasts from affected patients activated NF-κB in response to TNF but not TLR3 or RIG-I-like receptor (RLR) stimulation when isoform levels were high. By contrast, T cells, monocytes, and macrophages that expressed NEMO-Δex5 exhibited increased NF-κB activation and IFN production, and blood cells from these patients expressed a strong IFN and NF-κB transcriptional signature. Immune cells and TNF-stimulated dermal fibroblasts upregulated the inducible IKK protein (IKKi) that was stabilized by NEMO-Δex5, promoting type I IFN induction and antiviral responses. These data revealed how IKBKG mutations that lead to alternative splicing of skipping exon 5 cause a clinical phenotype we have named NEMO deleted exon 5 autoinflammatory syndrome (NDAS), distinct from the immune deficiency syndrome resulting from loss-of-function IKBKG mutations.


Asunto(s)
Enfermedades Autoinflamatorias Hereditarias , Síndromes de Inmunodeficiencia , Empalme Alternativo , Niño , Humanos , Quinasa I-kappa B/genética , Quinasa I-kappa B/metabolismo , Síndromes de Inmunodeficiencia/genética , Masculino , FN-kappa B/genética , FN-kappa B/metabolismo , Fenotipo
7.
Cell Rep ; 37(6): 109977, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34758308

RESUMEN

Tumor necrosis factor (TNF) is a key driver of several inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease, and psoriasis, in which affected tissues show an interferon-stimulated gene signature. Here, we demonstrate that TNF triggers a type-I interferon response that is dependent on the cyclic guanosine monophosphate-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. We show that TNF inhibits PINK1-mediated mitophagy and leads to altered mitochondrial function and to an increase in cytosolic mtDNA levels. Using cGAS-chromatin immunoprecipitation (ChIP), we demonstrate that cytosolic mtDNA binds to cGAS after TNF treatment. Furthermore, TNF induces a cGAS-STING-dependent transcriptional response that mimics that of macrophages from rheumatoid arthritis patients. Finally, in an inflammatory arthritis mouse model, cGAS deficiency blocked interferon responses and reduced inflammatory cell infiltration and joint swelling. These findings elucidate a molecular mechanism linking TNF to type-I interferon signaling and suggest a potential benefit for therapeutic targeting of cGAS/STING in TNF-driven diseases.


Asunto(s)
Artritis Experimental/inmunología , ADN Mitocondrial/metabolismo , Inmunidad Innata , Inflamación/inmunología , Interferón Tipo I/farmacología , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/fisiología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/genética , Artritis Experimental/metabolismo , ADN Mitocondrial/efectos de los fármacos , Femenino , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Macrófagos/inmunología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitofagia
8.
Nat Commun ; 12(1): 2745, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980856

RESUMEN

In mice, time of day strongly influences lethality in response to LPS, with survival greatest at the beginning compared to the end of the light cycle. Here we show that feeding, rather than light, controls time-of-day dependent LPS sensitivity. Mortality following LPS administration is independent of cytokine production and the clock regulator BMAL1 expressed in myeloid cells. In contrast, deletion of BMAL1 in hepatocytes globally disrupts the transcriptional response to the feeding cycle in the liver and results in constitutively high LPS sensitivity. Using RNAseq and functional validation studies we identify hepatic farnesoid X receptor (FXR) signalling as a BMAL1 and feeding-dependent regulator of LPS susceptibility. These results show that hepatocyte-intrinsic BMAL1 and FXR signalling integrate nutritional cues to regulate survival in response to innate immune stimuli. Understanding hepatic molecular programmes operational in response to these cues could identify novel pathways for targeting to enhance endotoxemia resistance.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Conducta Alimentaria/fisiología , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Sepsis/mortalidad , Factores de Transcripción ARNTL/genética , Animales , Ritmo Circadiano/genética , Modelos Animales de Enfermedad , Resistencia a la Enfermedad , Hepatocitos/metabolismo , Hipoglucemia/metabolismo , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/toxicidad , Ratones , Ratones Noqueados , Receptores Citoplasmáticos y Nucleares/genética , Sepsis/inducido químicamente , Sepsis/genética , Sepsis/metabolismo , Transducción de Señal
9.
Clin Immunol ; 224: 108664, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33422677

RESUMEN

OBJECTIVE: Characterize autoantibodies and autoimmune diseases in a prospective cohort of patients with Idiopathic CD4 Lymphocytopenia (ICL) a rare immunodeficiency characterized by an absolute CD4+ T count of <300 cells/µl in the absence of HIV or HTLV infection. METHODS: Single-Center prospective study of 67 patients conducted over an 11-year period. Rheumatologic evaluation and measurement of autoantibodies were systematically conducted, and flow cytometry of immune cell subsets was performed in a subset of patients. RESULTS: 54% of referred patients had clinical evidence of autoimmunity, with 34% having at least one autoimmune disease, most commonly autoimmune thyroid disease. 19%, had autoantibodies or incomplete features of autoimmune disease. Patients with autoimmune disease had more elevated serum immunoglobulins, and more effector memory T cells than those without autoimmunity. CONCLUSIONS: Evidence of autoimmunity, including autoimmune diseases, is more prevalent in ICL than the general population, and should be considered part of this syndrome.


Asunto(s)
Autoanticuerpos/análisis , Enfermedades Autoinmunes/inmunología , Inmunofenotipificación/métodos , Linfocitopenia-T Idiopática CD4-Positiva/inmunología , Adulto , Anciano , Enfermedades Autoinmunes/complicaciones , Estudios de Cohortes , Enfermedades Transmisibles/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Linfocitopenia-T Idiopática CD4-Positiva/complicaciones , Adulto Joven
11.
Proc Natl Acad Sci U S A ; 117(26): 15160-15171, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32541026

RESUMEN

IgG antibodies cause inflammation and organ damage in autoimmune diseases such as systemic lupus erythematosus (SLE). We investigated the metabolic profile of macrophages isolated from inflamed tissues in immune complex (IC)-associated diseases, including SLE and rheumatoid arthritis, and following IgG Fcγ receptor cross-linking. We found that human and mouse macrophages undergo a switch to glycolysis in response to IgG IC stimulation, mirroring macrophage metabolic changes in inflamed tissue in vivo. This metabolic reprogramming was required to generate a number of proinflammatory mediators, including IL-1ß, and was dependent on mTOR and hypoxia-inducible factor (HIF)1α. Inhibition of glycolysis, or genetic depletion of HIF1α, attenuated IgG IC-induced activation of macrophages in vitro, including primary human kidney macrophages. In vivo, glycolysis inhibition led to a reduction in kidney macrophage IL-1ß and reduced neutrophil recruitment in a murine model of antibody-mediated nephritis. Together, our data reveal the molecular mechanisms underpinning FcγR-mediated metabolic reprogramming in macrophages and suggest a therapeutic strategy for autoantibody-induced inflammation, including lupus nephritis.


Asunto(s)
Reprogramación Celular/fisiología , Nefritis Lúpica/metabolismo , Animales , Células Cultivadas , Dinoprostona/genética , Dinoprostona/metabolismo , Metabolismo Energético , Regulación de la Expresión Génica , Glucólisis/fisiología , Humanos , Inmunoglobulina G/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Riñón/citología , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especies Reactivas de Oxígeno , Receptores de IgG/genética , Receptores de IgG/metabolismo
12.
Arthritis Res Ther ; 22(1): 106, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32381123

RESUMEN

BACKGROUND: The tumor necrosis factor (TNF) superfamily cytokine TNF-like protein 1A (TL1A) and its receptor DR3 are essential for diverse animal models of autoimmune disease and may be pathogenic in rheumatoid arthritis (RA). However, the relationship of TL1A to disease duration, activity, and response to anti-TNF and other therapies in RA is not clear. METHODS: We measured soluble TL1A in synovial fluid (SF), serum, or plasma from RA first-degree relatives (FDRs) and in early RA and established disease. We measured the effects of anti-TNF and methotrexate (MTX) therapy on circulating TL1A from multiple independent RA treatment trials. We also determined the ability of a blocking anti-TL1A antibody to inhibit clinical disease and articular bone destruction in the murine collagen-induced arthritis (CIA) model of human RA. RESULTS: Soluble TL1A was specifically elevated in the blood and SF of patients with RA compared to patients with other diseases and was elevated early in disease and in at-risk anti-cyclic citrullinated peptide (CCP) (+) first-degree relatives (FDRs). Therapeutic TNF inhibition reduced serum TL1A in both responders and non-responders, whereas TL1A declined following MTX treatment only in responders. In murine CIA, TL1A blockade was clinically efficacious and reduced bone erosions. CONCLUSIONS: TL1A is specifically elevated in RA from early in the disease course and in at-risk FDRs. The decline in TL1A after TNF blockade suggests that TL1A levels may be a useful biomarker for TNF activity in RA. These results support the further investigation of the relationship between TL1A and TNF and TL1A blockade as a potential therapeutic strategy in RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/sangre , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/genética , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Humanos , Metotrexato/uso terapéutico , Ratones , Líquido Sinovial , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa
13.
J Exp Med ; 217(5)2020 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-32232430

RESUMEN

Melorheostosis is a rare sclerosing dysostosis characterized by asymmetric exuberant bone formation. Recently, we reported that somatic mosaicism for MAP2K1-activating mutations causes radiographical "dripping candle wax" melorheostosis. We now report somatic SMAD3 mutations in bone lesions of four unrelated patients with endosteal pattern melorheostosis. In vitro, the SMAD3 mutations stimulated the TGF-ß pathway in osteoblasts, enhanced nuclear translocation and target gene expression, and inhibited proliferation. Osteoblast differentiation and mineralization were stimulated by the SMAD3 mutation, consistent with higher mineralization in affected than in unaffected bone, but differing from MAP2K1 mutation-positive melorheostosis. Conversely, osteoblast differentiation and mineralization were inhibited when osteogenesis of affected osteoblasts was driven in the presence of BMP2. Transcriptome profiling displayed that TGF-ß pathway activation and ossification-related processes were significantly influenced by the SMAD3 mutation. Co-expression clustering illuminated melorheostosis pathophysiology, including alterations in ECM organization, cell growth, and interferon signaling. These data reveal antagonism of TGF-ß/SMAD3 activation by BMP signaling in SMAD3 mutation-positive endosteal melorheostosis, which may guide future therapies.


Asunto(s)
Melorreostosis/genética , Mutación/genética , Transducción de Señal , Proteína smad3/genética , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba/genética , Animales , Proteína Morfogenética Ósea 2/metabolismo , Huesos/patología , Calcificación Fisiológica , Diferenciación Celular , Línea Celular , Núcleo Celular/metabolismo , Proliferación Celular , Matriz Extracelular/metabolismo , Mutación con Ganancia de Función , Regulación de la Expresión Génica , Humanos , MAP Quinasa Quinasa 1/genética , Melorreostosis/diagnóstico por imagen , Melorreostosis/patología , Ratones , Modelos Biológicos , Osteoblastos/metabolismo , Osteogénesis , Transporte de Proteínas , Transcriptoma/genética
14.
JBMR Plus ; 3(8): e10214, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31485554

RESUMEN

Melorheostosis is a rare dysostosis involving cortical bone overgrowth that affects the appendicular skeleton. Patients present with pain, deformities, contractures, range of motion limitation(s), and limb swelling. It has been described in children as well as adults. We recently identified somatic mosaicism for gain-of-function mutations in MAP2K1 in patients with melorheostosis. Despite these advances in genetic understanding, there are no effective therapies or clinical guidelines to help clinicians and patients in disease management. In a study to better characterize the clinical and genetic aspects of the disease, we recruited 30 adults with a radiographic appearance of melorheostosis and corresponding increased uptake on 18F-NaF positron emission tomography (PET)/CT. Patients underwent physical exam, imaging studies, and laboratory assessment. All patients underwent nerve conduction studies and ultrasound imaging of the nerve in the anatomic distribution of melorheostosis. We found sensory deficits in approximately 77% of patients, with evidence of focal nerve entrapment in five patients. All patients reported pain; 53% of patients had changes in skin overlying the affected bone. No significant laboratory abnormalities were noted. Our findings suggest that patients with melorheostosis may benefit from a multidisciplinary team of dermatologists, neurologists, orthopedic surgeons, pain and palliative care specialists, and physical medicine and rehabilitation specialists. Future studies focused on disease management are needed. © 2019 The Authors. JBMR Plus Published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.

15.
Ann Rheum Dis ; 78(7): 957-966, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31040119

RESUMEN

OBJECTIVES: The presence of proinflammatory low-density granulocytes (LDG) has been demonstrated in autoimmune and infectious diseases. Recently, regulatory neutrophilic polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) were identified in systemic lupus erythematosus (SLE). Because LDG and PMN-MDSC share a similar phenotype with contrasting functional effects, we explored these cells in a cohort of patients with SLE. METHODS: LDG and normal-density granulocytes (NDG) were isolated from fresh blood of healthy donors (HD) and patients with SLE. Associations between LDG and clinical manifestations were analysed. Multicolor flow cytometry and confocal imaging were performed to immunophenotype the cells. The ability of LDG and NDG to suppress T cell function and induce cytokine production was quantified. RESULTS: LDG prevalence was elevated in SLE versus HD, associated with the interferon (IFN) 21-gene signature and disease activity. Also, the LDG-to-lymphocyte ratio associated better with SLE disease activity index than neutrophil-to-lymphocyte ratio. SLE LDG exhibited significantly heightened surface expression of various activation markers and also of lectin-like oxidised low-density lipoprotein receptor-1, previously described to be associated with PMN-MDSC. Supernatants from SLE LDG did not restrict HD CD4+ T cell proliferation in an arginase-dependent manner, suggesting LDG are not immunosuppressive. SLE LDG supernatants induced proinflammatory cytokine production (IFN gamma, tumour necrosis factor alpha and lymphotoxin alpha) from CD4+ T cells. CONCLUSIONS: Based on our results, SLE LDG display an activated phenotype, exert proinflammatory effects on T cells and do not exhibit MDSC function. These results support the concept that LDG represent a distinct proinflammatory subset in SLE with pathogenic potential, at least in part, through their ability to activate type 1 helper responses.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Granulocitos/inmunología , Lupus Eritematoso Sistémico/inmunología , Neutrófilos/inmunología , Adolescente , Adulto , Anciano , Estudios de Casos y Controles , Proliferación Celular , Femenino , Citometría de Flujo , Humanos , Inmunofenotipificación , Lupus Eritematoso Sistémico/sangre , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Fenotipo , Adulto Joven
16.
Nat Rev Rheumatol ; 15(6): 327-339, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31000790

RESUMEN

Rheumatic diseases have complex aetiologies that are not fully understood, which makes the study of pathogenic mechanisms in these diseases a challenge for researchers. Next-generation sequencing (NGS) and related omics technologies, such as transcriptomics, epigenomics and genomics, provide an unprecedented genome-wide view of gene expression, environmentally responsive epigenetic changes and genetic variation. The integrated application of NGS technologies to samples from carefully phenotyped clinical cohorts of patients has the potential to solve remaining mysteries in the pathogenesis of several rheumatic diseases, to identify new therapeutic targets and to underpin a precision medicine approach to the diagnosis and treatment of rheumatic diseases. This Review provides an overview of the NGS technologies available, showcases important advances in rheumatic disease research already powered by these technologies and highlights NGS approaches that hold particular promise for generating new insights and advancing the field.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades Reumáticas/genética , Epigenómica , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Enfermedades Reumáticas/etiología , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
17.
Immunology ; 157(2): 122-136, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30773630

RESUMEN

Innate immune responses vary in a circadian manner, and more recent investigations aim to understand the underlying molecular mechanisms. Cytokine production varies significantly over the course of a day depending on the time of stimulation by pathogens or Toll-like receptor ligands, and multiple signaling pathways linked to the cell-autonomous circadian clock modulate innate immunity. Recognition of foreign material, especially by innate immune cells, engages a myriad of receptors, which trigger inflammatory responses, as well as endocytosis and degradation and/or processing for antigen presentation. Because of the close connection between particle engulfment and inflammation, it has been proposed that phagocytic uptake may drive cytokine production in phagocytes. Here we show that bacterial particle ingestion by mouse peritoneal macrophages displays temporal variation, but is independent of the cell-intrinsic circadian clock in an ex vivo setting. Although cytokine production is dependent on phagocytosis, uptake capacity across 12 hr does not translate into 24-hr rhythms in cytokine production. In vivo, time-of-day variations in phagocytic capacity are not found, whereas a time of day and clock-dependent cytokine response is maintained. These data show that efficiency of bacterial phagocytosis and the 24-hr rhythmicity of cytokine production by macrophages are independent of one another and should be studied separately.


Asunto(s)
Relojes Circadianos/inmunología , Citocinas/inmunología , Macrófagos Peritoneales/inmunología , Fagocitosis , Animales , Macrófagos Peritoneales/citología , Ratones , Ratones Noqueados
18.
J Clin Invest ; 129(4): 1551-1565, 2019 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-30694219

RESUMEN

Across clinical trials, T cell expansion and persistence following adoptive cell transfer (ACT) have correlated with superior patient outcomes. Herein, we undertook a pan-cancer analysis to identify actionable ligand-receptor pairs capable of compromising T cell durability following ACT. We discovered that FASLG, the gene encoding the apoptosis-inducing ligand FasL, is overexpressed within the majority of human tumor microenvironments (TMEs). Further, we uncovered that Fas, the receptor for FasL, is highly expressed on patient-derived T cells used for clinical ACT. We hypothesized that a cognate Fas-FasL interaction within the TME might limit both T cell persistence and antitumor efficacy. We discovered that genetic engineering of Fas variants impaired in the ability to bind FADD functioned as dominant negative receptors (DNRs), preventing FasL-induced apoptosis in Fas-competent T cells. T cells coengineered with a Fas DNR and either a T cell receptor or chimeric antigen receptor exhibited enhanced persistence following ACT, resulting in superior antitumor efficacy against established solid and hematologic cancers. Despite increased longevity, Fas DNR-engineered T cells did not undergo aberrant expansion or mediate autoimmunity. Thus, T cell-intrinsic disruption of Fas signaling through genetic engineering represents a potentially universal strategy to enhance ACT efficacy across a broad range of human malignancies.


Asunto(s)
Traslado Adoptivo , Ingeniería Genética , Neoplasias Experimentales/terapia , Receptores Quiméricos de Antígenos , Transducción de Señal/inmunología , Microambiente Tumoral/inmunología , Animales , Proteína Ligando Fas/genética , Proteína Ligando Fas/inmunología , Proteína de Dominio de Muerte Asociada a Fas/genética , Proteína de Dominio de Muerte Asociada a Fas/inmunología , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Neoplasias Experimentales/genética , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/patología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/uso terapéutico , Transducción de Señal/genética , Microambiente Tumoral/genética , Receptor fas/genética , Receptor fas/inmunología
19.
J Bone Miner Res ; 34(5): 883-895, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30667555

RESUMEN

Melorheostosis is a rare non-hereditary condition characterized by dense hyperostotic lesions with radiographic "dripping candle wax" appearance. Somatic activating mutations in MAP2K1 have recently been identified as a cause of melorheostosis. However, little is known about the development, composition, structure, and mechanical properties of the bone lesions. We performed a multi-method phenotype characterization of material properties in affected and unaffected bone biopsy samples from six melorheostosis patients with MAP2K1 mutations. On standard histology, lesions show a zone with intensively remodeled osteonal-like structure and prominent osteoid accumulation, covered by a shell formed through bone apposition, consisting of compact multi-layered lamellae oriented parallel to the periosteal surface and devoid of osteoid. Compared with unaffected bone, melorheostotic bone has lower average mineralization density measured by quantitative backscattered electron imaging (CaMean: -4.5%, p = 0.04). The lamellar portion of the lesion is even less mineralized, possibly because the newly deposited material has younger tissue age. Affected bone has higher porosity by micro-CT, due to increased tissue vascularity and elevated 2D-microporosity (osteocyte lacunar porosity: +39%, p = 0.01) determined on quantitative backscattered electron images. Furthermore, nano-indentation modulus characterizing material hardness and stiffness was strictly dependent on tissue mineralization (correlation with typical calcium concentration, CaPeak: r = 0.8984, p = 0.0150, and r = 0.9788, p = 0.0007, respectively) in both affected and unaffected bone, indicating that the surgical hardness of melorheostotic lesions results from their lamellar structure. The results suggest a model for pathophysiology of melorheostosis caused by somatic activating mutations in MAP2K1, in which the genetically induced gradual deterioration of bone microarchitecture triggers a periosteal reaction, similar to the process found to occur after bone infection or local trauma, and leads to an overall cortical outgrowth. The micromechanical properties of the lesions reflect their structural heterogeneity and correlate with local variations in mineral content, tissue age, and remodeling rates, in the same way as normal bone. © 2018 American Society for Bone and Mineral Research.


Asunto(s)
Densidad Ósea , MAP Quinasa Quinasa 1 , Melorreostosis , Modelos Biológicos , Mutación , Periostio , Microtomografía por Rayos X , Adulto , Femenino , Humanos , MAP Quinasa Quinasa 1/genética , MAP Quinasa Quinasa 1/metabolismo , Masculino , Melorreostosis/diagnóstico por imagen , Melorreostosis/genética , Melorreostosis/metabolismo , Melorreostosis/fisiopatología , Persona de Mediana Edad , Periostio/diagnóstico por imagen , Periostio/metabolismo , Periostio/fisiopatología
20.
Arthritis Rheumatol ; 71(7): 1135-1140, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30597768

RESUMEN

OBJECTIVE: Autoreactive IgE antibodies have been implicated in the pathogenesis of systemic lupus erythematosus (SLE). We hypothesize that omalizumab, a monoclonal antibody binding IgE, may improve SLE activity by reducing type I interferon (IFN) production by hampering plasmacytoid dendritic cells and basophil activation. This study was undertaken to assess the safety, tolerability, and clinical efficacy of omalizumab in mild to moderate SLE. METHODS: Sixteen subjects with SLE and a Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) score of ≥4 and elevated autoreactive IgE antibody levels were randomized to receive omalizumab or placebo (2:1) for 16 weeks, followed by 16 weeks of open-label treatment and a 4-week washout period. The SLEDAI-2K score, British Isles Lupus Assessment Group index (BILAG 2004) score, and physician's global assessment of disease activity were recorded at each visit. The type I IFN-induced gene signature was determined using quantitative polymerase chain reaction. RESULTS: Omalizumab was well tolerated with no allergic reactions, and mostly mild adverse events comparable to those experienced with placebo treatment. SLEDAI-2K scores improved in the omalizumab group compared to the placebo group at week 16 (P = 0.038), as well as during the open-label phase in subjects initially receiving placebo (P = 0.02). No worsening in BILAG scores or the physician's global assessment was detected. There was a trend toward a reduction in IFN gene signature in subjects treated with omalizumab (P = 0.11), especially in subjects with a high baseline IFN signature (P = 0.052). CONCLUSION: Our findings indicate that omalizumab is well tolerated in SLE and is associated with improvement in disease activity. Larger randomized clinical trials will be needed to assess the efficacy of omalizumab in patients with SLE.


Asunto(s)
Lupus Eritematoso Sistémico/tratamiento farmacológico , Omalizumab/uso terapéutico , Adulto , Anciano , Basófilos/inmunología , Células Dendríticas/inmunología , Femenino , Enfermedades Gastrointestinales/epidemiología , Humanos , Inmunoglobulina E/inmunología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Enfermedades Renales/epidemiología , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Persona de Mediana Edad , Enfermedades del Sistema Nervioso/epidemiología , Enfermedades Respiratorias/epidemiología , Enfermedades de la Piel/epidemiología , Transcriptoma , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...