Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 20(11): 2496-2508, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38385969

RESUMEN

We report a numerical investigation of the magnetophoresis of solutions containing paramagnetic metal ions. Using a simulated magnetic field of a superconducting magnet and the convection-diffusion model, we study the transport of transition metal salts through a porous medium domain. In particular, through a detailed comparison of the numerical results of magnetophoretic velocity and ion concentration profiles with prior published experiments, we validate the model. Subsequent to model validation, we perform a systematic analysis of the model parameters on the magnetophoresis of metal ions. Magnetophoresis is quantified with a magnetic Péclet number Pem. Under a non-uniform magnetic field, Pem initially rises, exhibiting a local maximum, and subsequently declines towards a quasi-steady value. Our results show that both the initial and maximum Pem values increase with increasing magnetic susceptibility, initial concentration of metal solutes, and ion cluster size. Conversely, Pem decreases as the porosity of the medium increases. Finally, the adsorption of metal salts onto the porous media surface is modeled through a dimensionless Damkohler number Daad. Our results suggest that the adsorption significantly slows the magnetophoresis and self-diffusion of the paramagnetic metal salts, with a net magnetophoresis velocity dependent on the kinetics and equilibrium adsorption properties of the metal salts. The latter result underscores the crucial role of adsorption in future magnetophoresis research.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38617995

RESUMEN

We present an extensive study on the effect of substrate orientation, strain, stoichiometry, and defects on spin-ice physics in Ho2Ti2O7 thin films grown onto yttria-stabilized-zirconia substrates. We find that growth in different orientations produces different strain states in the films. All films exhibit similar c-axis lattice parameters for their relaxed portions, which are consistently larger than the bulk value of 10.1 Å. Transmission electron microscopy reveals antisite disorder and growth defects to be present in the films, but evidence of stuffing is not observed. The amount of disorder depends on the growth orientation, with the (110) film showing the least. Magnetization measurements at 1.8 K show the expected magnetic anisotropy and saturation magnetization values associated with a spin ice for all orientations; shape anisotropy is apparent when comparing in- and out-of-plane directions. Significantly, only the (110)-oriented films display the hallmark spin-ice plateau state in magnetization, albeit less well defined compared to the plateau observed in a single crystal. Neutron-scattering maps on the more disordered (111)-oriented films show the Q=0 phase previously observed in bulk materials, but the Q=X phase giving the plateau state remains elusive. We conclude that the spin-ice physics in thin films is modified by defects and strain, leading to a reduction in the temperature at which correlations drive the system into the spin-ice state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA