Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pacing Clin Electrophysiol ; 22(1 Pt 2): 158-64, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9990622

RESUMEN

Optimizing lead placement in transvenous defibrillation remains central to the clinical aspects of the defibrillation procedure. Studies involving superior vena cava (SVC) return electrodes have found that left ventricular (LV) leads or septal positioning of the right ventricular (RV) lead minimizes the voltage defibrillation threshold (VDFT) in endocardial lead-->SVC defibrillation systems. However, similar studies have not been conducted for active-can configurations. The goal of this study was to determine the optimal lead position to minimize the VDFT for systems incorporating an active can. This study used a high resolution finite element model of a human torso that includes the fiber architecture of the ventricular myocardium to find the role of lead positioning in a transvenous LEAD-->can defibrillation electrode system. It was found that, among single lead systems, posterior positioning of leads in the right ventricle lowers VDFTs appreciably. Furthermore, a septal location of leads resulted in lower VDFTs than free-wall positioning. Increasing the number of leads, and thus the effective lead surface area in the right ventricle also resulted in lower VDFTs. However, the lead configuration that resulted in the lowest VDFTs is a combination of mid-cavity right ventricle lead and a mid-cavity left ventricle lead. The addition of a left ventricular lead resulted in a reduction in the size of the low gradient regions and a change of its location from the left ventricular free wall to the septal wall.


Asunto(s)
Simulación por Computador , Desfibriladores Implantables , Cardioversión Eléctrica/instrumentación , Ventrículos Cardíacos/anatomía & histología , Modelos Cardiovasculares , Cateterismo Venoso Central , Análisis de Elementos Finitos , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Masculino , Valores de Referencia , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/terapia , Tórax/anatomía & histología , Vena Cava Superior/anatomía & histología , Función Ventricular
2.
Ann Biomed Eng ; 26(5): 840-9, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-9779957

RESUMEN

A heart-torso model including fiber orientation is used to calculate electric field strength in an active-can transvenous defibrillation system and estimate errors due to inadequate description of the anisotropy of the myocardium. Using a minimum potential gradient (5 V/cm) in a critical mass (95%) of the tissue, the estimated defibrillation voltage threshold for a right ventricular transvenous lead placement differs by only 4.5% when using isotropic myocardial conductivity compared to a model with realistic fiber architecture. In addition, pointwise comparisons of the two solutions reveal differences of 10.8% rms in potential gradient strength and 31.6% rms in current density magnitude in the myocardium, resulting in a change in the location of the low gradient regions. These results suggest that if a minimum potential gradient throughout the heart is necessary to avoid reinitiation of fibrillatory wave fronts, then isotropic models are adequate for modeling the electric field in the heart. Alternatively, the model demonstrates the use of physiologically based descriptions of anisotropy and fiber orientation, which will soon allow simulations of shock induced membrane polarization during defibrillation.


Asunto(s)
Anisotropía , Simulación por Computador , Cardioversión Eléctrica , Corazón/fisiología , Modelos Cardiovasculares , Adulto , Sesgo , Conductividad Eléctrica , Corazón/anatomía & histología , Humanos , Imagen por Resonancia Magnética , Masculino , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...