Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Phys J A Hadron Nucl ; 59(3): 42, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36915898

RESUMEN

Neutron-capture cross sections of neutron-rich nuclei are calculated using a Hauser-Feshbach model when direct experimental cross sections cannot be obtained. A number of codes to perform these calculations exist, and each makes different assumptions about the underlying nuclear physics. We investigated the systematic uncertainty associated with the choice of Hauser-Feshbach code used to calculate the neutron-capture cross section of a short-lived nucleus. The neutron-capture cross section for 73 Zn (n, γ ) 74 Zn was calculated using three Hauser-Feshbach statistical model codes: TALYS, CoH, and EMPIRE. The calculation was first performed without any changes to the default settings in each code. Then an experimentally obtained nuclear level density (NLD) and γ -ray strength function ( γ SF ) were included. Finally, the nuclear structure information was made consistent across the codes. The neutron-capture cross sections obtained from the three codes are in good agreement after including the experimentally obtained NLD and γ SF , accounting for differences in the underlying nuclear reaction models, and enforcing consistent approximations for unknown nuclear data. It is possible to use consistent inputs and nuclear physics to reduce the differences in the calculated neutron-capture cross section from different Hauser-Feshbach codes. However, ensuring the treatment of the input of experimental data and other nuclear physics are similar across multiple codes requires a careful investigation. For this reason, more complete documentation of the inputs and physics chosen is important. Supplementary Information: The online version contains supplementary material available at 10.1140/epja/s10050-023-00920-0.

3.
Phys Rev Lett ; 127(18): 182501, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34767384

RESUMEN

The validity of the Brink-Axel hypothesis, which is especially important for numerous astrophysical calculations, is addressed for ^{116,120,124}Sn below the neutron separation energy by means of three independent experimental methods. The γ-ray strength functions (GSFs) extracted from primary γ-decay spectra following charged-particle reactions with the Oslo method and with the shape method demonstrate excellent agreement with those deduced from forward-angle inelastic proton scattering at relativistic beam energies. In addition, the GSFs are shown to be independent of excitation energies and spins of the initial and final states. The results provide a critical test of the generalized Brink-Axel hypothesis in heavy nuclei, demonstrating its applicability in the energy region of the pygmy dipole resonance.

4.
Phys Rev Lett ; 125(18): 182701, 2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33196226

RESUMEN

The cascading 3.21 and 4.44 MeV electric quadrupole transitions have been observed from the Hoyle state at 7.65 MeV excitation energy in ^{12}C, excited by the ^{12}C(p,p^{'}) reaction at 10.7 MeV proton energy. From the proton-γ-γ triple coincidence data, a value of Γ_{rad}/Γ=6.2(6)×10^{-4} was obtained for the radiative branching ratio. Using our results, together with Γ_{π}^{E0}/Γ from Eriksen et al. [Phys. Rev. C 102, 024320 (2020)PRVCAN2469-998510.1103/PhysRevC.102.024320] and the currently adopted Γ_{π}(E0) values, the radiative width of the Hoyle state is determined as Γ_{rad}=5.1(6)×10^{-3} eV. This value is about 34% higher than the currently adopted value and will impact models of stellar evolution and nucleosynthesis.

5.
Phys Rev Lett ; 125(12): 122502, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-33016727

RESUMEN

Reliable neutron-induced-reaction cross sections of unstable nuclei are essential for nuclear astrophysics and applications but their direct measurement is often impossible. The surrogate-reaction method is one of the most promising alternatives to access these cross sections. In this work, we successfully applied the surrogate-reaction method to infer for the first time both the neutron-induced fission and radiative capture cross sections of ^{239}Pu in a consistent manner from a single measurement. This was achieved by combining simultaneously measured fission and γ-emission probabilities for the ^{240}Pu(^{4}He,^{4}He^{'}) surrogate reaction with a calculation of the angular-momentum and parity distributions populated in this reaction. While other experiments measure the probabilities for some selected γ-ray transitions, we measure the γ-emission probability. This enlarges the applicability of the surrogate-reaction method.

6.
Nat Commun ; 10(1): 3986, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31484929

RESUMEN

We demonstrate excitation of photosensitisers (PSs) by accelerated protons to produce fluorescence and singlet oxygen. Their fluorescence follows a pattern similar to the proton energy loss in matter, while proton-derived fluorescence spectra match the photon-induced spectra. PSs excited in dry gelatin exhibit enhanced phosphorescence, suggesting an efficient PSs triplet state population. Singlet oxygen measurements, both optically at ~1270 nm and through the photoproduct of protoporphyrin IX (PpIX), demonstrate cytotoxic singlet oxygen generation by proton excitation. The singlet oxygen-specific scavenger 1,4-diazabicyclo[2.2.2]octane (DABCO) abrogates the photoproduct formation under proton excitation, but cannot countermand the overall loss of PpIX fluorescence. Furthermore, in two cell lines, M059K and T98G, we observe differential cell death upon the addition of the PS cercosporin, while in U87 cells we see no effect at any proton irradiation dose. Our results pave the way for a novel treatment combining proton therapy and "proton-dynamic therapy" for more efficient tumour eradication.


Asunto(s)
Fármacos Fotosensibilizantes/farmacología , Terapia de Protones/métodos , Protones , Protoporfirinas/metabolismo , Oxígeno Singlete/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Línea Celular Tumoral , Quimioradioterapia , Fluorescencia , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/radioterapia , Perileno/análogos & derivados , Perileno/farmacología , Piperazinas/farmacología , Protectores contra Radiación/farmacología , Espectrometría de Fluorescencia
8.
Phys Rev Lett ; 121(19): 192501, 2018 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-30468600

RESUMEN

The lifetimes of the first excited 2^{+}, 4^{+}, and 6^{+} states in ^{98}Zr were measured with the recoil-distance Doppler shift method in an experiment performed at GANIL. Excited states in ^{98}Zr were populated using the fission reaction between a 6.2 MeV/u ^{238}U beam and a ^{9}Be target. The γ rays were detected with the EXOGAM array in correlation with the fission fragments identified by mass and atomic number in the VAMOS++ spectrometer. Our result shows a very small B(E2;2_{1}^{+}→0_{1}^{+}) value in ^{98}Zr, thereby confirming the very sudden onset of collectivity at N=60. The experimental results are compared to large-scale Monte Carlo shell model and beyond-mean-field calculations. The present results indicate the coexistence of two additional deformed shapes in this nucleus along with the spherical ground state.

9.
Phys Rev Lett ; 118(22): 222501, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28621970

RESUMEN

Fast-neutron-induced fission of ^{238}U at an energy just above the fission threshold is studied with a novel technique which involves the coupling of a high-efficiency γ-ray spectrometer (MINIBALL) to an inverse-kinematics neutron source (LICORNE) to extract charge yields of fission fragments via γ-γ coincidence spectroscopy. Experimental data and fission models are compared and found to be in reasonable agreement for many nuclei; however, significant discrepancies of up to 600% are observed, particularly for isotopes of Sn and Mo. This indicates that these models significantly overestimate the standard 1 fission mode and suggests that spherical shell effects in the nascent fission fragments are less important for low-energy fast-neutron-induced fission than for thermal neutron-induced fission. This has consequences for understanding and modeling the fission process, for experimental nuclear structure studies of the most neutron-rich nuclei, for future energy applications (e.g., Generation IV reactors which use fast-neutron spectra), and for the reactor antineutrino anomaly.

10.
Rev Sci Instrum ; 87(11): 11D825, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910358

RESUMEN

The high-fluence neutron spectrum produced by the National Ignition Facility (NIF) provides an opportunity to measure the activation of materials by fast-spectrum neutrons. A new large-volume gas-cell diagnostic has been designed and qualified to measure the activation of gaseous substances at the NIF. This in-chamber diagnostic is recoverable, reusable and has been successfully fielded. Data from the qualification of the diagnostic have been used to benchmark an Monte Carlo N-Particle Transport Code simulation describing the downscattered neutron spectrum seen by the gas cell. We present early results from the use of this diagnostic to measure the activation of natXe and discuss future work to study the strength of interactions between plasma and nuclei.

11.
Phys Rev Lett ; 117(14): 142701, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27740831

RESUMEN

The ß-decay intensity of ^{70}Co was measured for the first time using the technique of total absorption spectroscopy. The large ß-decay Q value [12.3(3) MeV] offers a rare opportunity to study ß-decay properties in a broad energy range. Two surprising features were observed in the experimental results, namely, the large fragmentation of the ß intensity at high energies, as well as the strong competition between γ rays and neutrons, up to more than 2 MeV above the neutron-separation energy. The data are compared to two theoretical calculations: the shell model and the quasiparticle random phase approximation (QRPA). Both models seem to be missing a significant strength at high excitation energies. Possible interpretations of this discrepancy are discussed. The shell model is used for a detailed nuclear structure interpretation and helps to explain the observed γ-neutron competition. The comparison to the QRPA calculations is done as a means to test a model that provides global ß-decay properties for astrophysical calculations. Our work demonstrates the importance of performing detailed comparisons to experimental results, beyond the simple half-life comparisons. A realistic and robust description of the ß-decay intensity is crucial for our understanding of nuclear structure as well as of r-process nucleosynthesis.

13.
Phys Rev Lett ; 116(24): 242502, 2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27367386

RESUMEN

Nuclear reactions where an exotic nucleus captures a neutron are critical for a wide variety of applications, from energy production and national security, to astrophysical processes, and nucleosynthesis. Neutron capture rates are well constrained near stable isotopes where experimental data are available; however, moving far from the valley of stability, uncertainties grow by orders of magnitude. This is due to the complete lack of experimental constraints, as the direct measurement of a neutron-capture reaction on a short-lived nucleus is extremely challenging. Here, we report on the first experimental extraction of a neutron capture reaction rate on ^{69}Ni, a nucleus that is five neutrons away from the last stable isotope of Ni. The implications of this measurement on nucleosynthesis around mass 70 are discussed, and the impact of similar future measurements on the understanding of the origin of the heavy elements in the cosmos is presented.

14.
Phys Rev Lett ; 116(2): 022701, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26824536

RESUMEN

Neutron-rich {96,98}Sr isotopes have been investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross sections. These results allow, for the first time, the drawing of definite conclusions about the shape coexistence of highly deformed prolate and spherical configurations. In particular, a very small mixing between the coexisting states is observed, contrary to other mass regions where strong mixing is present. Experimental results have been compared to beyond-mean-field calculations using the Gogny D1S interaction in a five-dimensional collective Hamiltonian formalism, which reproduce the shape change at N=60.

15.
Phys Rev Lett ; 116(1): 012502, 2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26799014

RESUMEN

We analyze primary γ-ray spectra of the odd-odd (238)Np nucleus extracted from (237)Np(d,pγ)(238)Np coincidence data measured at the Oslo Cyclotron Laboratory. The primary γ spectra cover an excitation-energy region of 0≤E(I)≤5.4 MeV, and allow us to perform a detailed study of the γ-ray strength as a function of excitation energy. Hence, we can test the validity of the generalized Brink-Axel hypothesis, which, in its strictest form, claims no excitation-energy dependence on the γ strength. In this work, using the available high-quality (238)Np data, we show that the γ-ray strength function is to a very large extent independent of the initial and final states. Thus, for the first time, the generalized Brink-Axel hypothesis is experimentally verified for γ transitions between states in the quasicontinuum region, not only for specific collective resonances, but also for the full strength below the neutron separation energy. Based on our findings, the necessary criteria for the generalized Brink-Axel hypothesis to be fulfilled are outlined.

16.
Phys Rev Lett ; 111(24): 242504, 2013 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-24483649

RESUMEN

The γ-ray strength function of 56Fe has been measured from proton-γ coincidences for excitation energies up to ≈11 MeV. The low-energy enhancement in the γ-ray strength function, which was first discovered in the (3He,αγ)56Fe reaction, is confirmed with the (p,p'γ)56Fe experiment reported here. Angular distributions of the γ rays give for the first time evidence that the enhancement is dominated by dipole transitions.

17.
Phys Rev Lett ; 109(16): 162503, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-23215072

RESUMEN

The orbital M1 scissors resonance has been measured for the first time in the quasicontinuum of actinides. Particle-γ coincidences are recorded with deuteron and (3)He-induced reactions on (232)Th. The residual nuclei (231,232,233)Th and (232,233) Pa show an unexpectedly strong integrated strength of B(M1)=11-15µ(n)(2) in the E(γ)=1.0-3.5 MeV region. The increased γ-decay probability in actinides due to scissors resonance is important for cross-section calculations for future fuel cycles of fast nuclear reactors and may also have an impact on stellar nucleosynthesis.

18.
Phys Rev Lett ; 104(16): 162501, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20482043

RESUMEN

A measurement of the energy and spin of superdeformed states in 190Hg, obtained through the observation of transitions directly linking superdeformed and normal states, expands the number of isotopes in which binding energies at superdeformation are known. Comparison with neighboring nuclei shows that two-proton separation energies are higher in the superdeformed state than in the normal state, despite the lower Coulomb barrier and lower total binding energy. This unexpected result provides a critical test for nuclear models.

19.
Phys Rev Lett ; 102(16): 162504, 2009 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-19518705

RESUMEN

The radiative strength function of 117Sn has been measured up to the neutron separation energy using the (3He, 3He' gamma) reaction. An increase in the slope of the strength function around E gamma=4.5 MeV indicates the onset of a resonancelike structure, giving a significant enhancement of the radiative strength function compared to standard models in the energy region 4.5

20.
Phys Rev Lett ; 101(1): 012502, 2008 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-18764107

RESUMEN

The reduced transition probabilities, B(E2; 0(gs)+ -->2(1)+), have been measured in the radioactive isotopes (108,106)Sn using subbarrier Coulomb excitation at the REX-ISOLDE facility at CERN. Deexcitation gamma rays were detected by the highly segmented MINIBALL Ge-detector array. The results, B(E2;0(gs)+ -->2(1)+)=0.222(19)e2b2 for 108Sn and B(E2; 0(gs)+-->2(1)+)=0.195(39)e2b2 for 106Sn were determined relative to a stable 58Ni target. The resulting B(E2) values are approximately 30% larger than shell-model predictions and deviate from the generalized seniority model. This experimental result may point towards a weakening of the N=Z=50 shell closure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...