Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36838643

RESUMEN

The presented work shows the antibacterial activity of TiO2 photocatalysts modified by 3-aminopropyltriethoxysilane (APTES). The APTES-functionalized TiO2 samples were obtained by the solvothermal process followed by calcination. The antibacterial activity of APTES/TiO2 samples was evaluated with two species of bacteria, Escherichia coli and Staphylococcus epidermidis, under artificial solar light (ASL) irradiation. The used bacteria are model organisms characterized by negative zeta potential (approx. -44.2 mV for E. coli and -42.3 mV for S. epidermidis). For the first time, the antibacterial properties of APTES-functionalized TiO2 were evaluated against mono- and co-cultured bacteria. The high antibacterial properties characterized the obtained APTES-modified nanomaterials. The best antibacterial properties were presented in the TiO2-4 h-120 °C-300 mM-Ar-300 °C sample (modified with 300 mM of APTES and calcined at 300 °C). The improvement of the antibacterial properties was attributed to a positive value of zeta potential, high surface area, and porous volume.


Asunto(s)
Escherichia coli , Staphylococcus epidermidis , Escherichia coli/efectos de la radiación , Técnicas de Cocultivo , Catálisis , Titanio/efectos de la radiación , Antibacterianos
2.
Molecules ; 27(3)2022 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-35164212

RESUMEN

A visible-light photocatalytic performance of 3-aminopropyltriethoxysilane (APTES)-modified TiO2 nanomaterials obtained by solvothermal modification under elevated pressure, followed by calcination in an argon atmosphere at 800-1000 °C, is presented for the first time. The presence of silicon and carbon in the APTES/TiO2 photocatalysts contributed to the effective delay of the anatase-to-rutile phase transformation and the growth of the crystallites size of both polymorphous forms of TiO2 during heating. Thus, the calcined APTES-modified TiO2 exhibited higher pore volume and specific surface area compared with the reference materials. The change of TiO2 surface charge from positive to negative after the heat treatment increased the adsorption of the methylene blue compound. Consequently, due to the blocking of active sites on the TiO2 surface, the adsorption process negatively affected the photocatalytic properties. All calcined photocatalysts obtained after modification via APTES showed a higher dye decomposition degree than the reference samples. For all 3 modifier concentrations tested, the best photoactivity was noted for nanomaterials calcined at 900 °C due to a higher specific surface area than materials calcined at 1000 °C, and a larger number of active sites available on the TiO2 surface compared with samples annealed at 800 °C. It was found that the optimum concentration for TiO2 modification, at which the highest dye decomposition degree was noted, was 500 mM.

3.
Biochem Biophys Res Commun ; 534: 1064-1068, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33092791

RESUMEN

In this work, the impact of APTES-modified TiO2 photocatalysts on antioxidant enzymes (catalase and superoxide dismutase) activity secreted by bacteria was presented. Microbial tests has been examined using Escherichia coli (ATCC 29425) and Staphylococcus epidermidis (ATCC 49461) as model organisms. It was found that APTES-TiO2 affected the activity of antioxidant enzymes. Additionally, obtained APTES-TiO2 photocatalysts were capable of total E. coli and S. epidermidis inactivation under artificial solar light irradiation. The sample modified with the concentration of APTES equals 300 mM (TiO2-4h-120°C-300mM) showed the strongest photocatalytic activity toward both bacteria species. The two-stage photocatalytic mechanism of bacteria response to photocatalysts was proposed.


Asunto(s)
Catalasa/metabolismo , Escherichia coli/enzimología , Propilaminas/química , Silanos/química , Staphylococcus epidermidis/enzimología , Superóxido Dismutasa/metabolismo , Titanio/química , Catálisis/efectos de la radiación , Desinfección , Activación Enzimática/efectos de la radiación , Escherichia coli/citología , Escherichia coli/efectos de la radiación , Luz , Viabilidad Microbiana/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Procesos Fotoquímicos/efectos de la radiación , Staphylococcus epidermidis/citología , Staphylococcus epidermidis/efectos de la radiación
4.
Environ Sci Pollut Res Int ; 26(12): 12150-12157, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30830668

RESUMEN

Transported desert dust particles (TDDP) are soil particles suspended in the air. Being spread all over the globe by the winds, TDDP affect animals, including humans, plants and other organisms not only in the areas of their emission. In humans, TDDP are responsible for diseases of the respiratory (e.g. asthma) and circulatory (e.g. heart failure) systems and they also act directly on the epithelium and its mucus layer after deposition in the mouth and respiratory system. The aim of the study was to determine the influence of TDDP on the rheology of mucus and saliva, and thus on their functioning. The artificial mucus and saliva, as well as Arizona TDDP, were used in experiments. The rheological properties of TDDP were determined with the use of an oscillatory rheometer, at various temperatures and in the presence of different amount of TDDP. Moreover, the diffusion time of the marker (rhodamine B) throughout mucus with desert dust particles was examined. The obtained results demonstrate that the presence of TDDP in the saliva and mucus model increases their apparent viscosity. The concentration of particles is positively correlated with the increase of viscosity. However, it has not been demonstrated that the presence of TDDP in mucus significantly influenced the diffusion of a fluorescent marker throughout the mucus. The presence of TDDP in the saliva and mucus may interfere with their moisturising function, and cause difficulties in swallowing by increasing the viscosity of mucus and saliva. Moreover, increased viscosity of mucus may cause problems with its ability to pass to the upper respiratory tracts, which may lead to a general discomfort or local inflammation.


Asunto(s)
Polvo/análisis , Moco/metabolismo , Material Particulado/toxicidad , Reología , Saliva/metabolismo , Alérgenos , Animales , Arizona , Transporte Biológico , Difusión , Elasticidad , Humanos , Sistema Respiratorio , Temperatura , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...