Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Front Neurosci ; 18: 1344076, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572151

RESUMEN

Introduction: Type C hepatic encephalopathy (HE) is a decompensating event of chronic liver disease leading to severe motor and cognitive impairment. The progression of type C HE is associated with changes in brain metabolite concentrations measured by 1H magnetic resonance spectroscopy (MRS), most noticeably a strong increase in glutamine to detoxify brain ammonia. In addition, alterations of brain cellular architecture have been measured ex vivo by histology in a rat model of type C HE. The aim of this study was to assess the potential of diffusion-weighted MRS (dMRS) for probing these cellular shape alterations in vivo by monitoring the diffusion properties of the major brain metabolites. Methods: The bile duct-ligated (BDL) rat model of type C HE was used. Five animals were scanned before surgery and 6- to 7-week post-BDL surgery, with each animal being used as its own control. 1H-MRS was performed in the hippocampus (SPECIAL, TE = 2.8 ms) and dMRS in a voxel encompassing the entire brain (DW-STEAM, TE = 15 ms, diffusion time = 120 ms, maximum b-value = 25 ms/µm2) on a 9.4 T scanner. The in vivo MRS acquisitions were further validated with histological measures (immunohistochemistry, Golgi-Cox, electron microscopy). Results: The characteristic 1H-MRS pattern of type C HE, i.e., a gradual increase of brain glutamine and a decrease of the main organic osmolytes, was observed in the hippocampus of BDL rats. Overall increased metabolite diffusivities (apparent diffusion coefficient and intra-stick diffusivity-Callaghan's model, significant for glutamine, myo-inositol, and taurine) and decreased kurtosis coefficients were observed in BDL rats compared to control, highlighting the presence of osmotic stress and possibly of astrocytic and neuronal alterations. These results were consistent with the microstructure depicted by histology and represented by a decline in dendritic spines density in neurons, a shortening and decreased number of astrocytic processes, and extracellular edema. Discussion: dMRS enables non-invasive and longitudinal monitoring of the diffusion behavior of brain metabolites, reflecting in the present study the globally altered brain microstructure in BDL rats, as confirmed ex vivo by histology. These findings give new insights into metabolic and microstructural abnormalities associated with high brain glutamine and its consequences in type C HE.

2.
ArXiv ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38259346

RESUMEN

Biophysical modeling of diffusion MRI (dMRI) offers the exciting potential of bridging the gap between the macroscopic MRI resolution and microscopic cellular features, effectively turning the MRI scanner into a noninvasive in vivo microscope. In brain white matter, the Standard Model (SM) interprets the dMRI signal in terms of axon dispersion, intra- and extra-axonal water fractions and diffusivities. However, for SM to be fully applicable and correctly interpreted, it needs to be carefully evaluated using histology. Here, we perform a comprehensive histological validation of the SM parameters, by characterizing WM microstructure in sham and injured rat brains using volume (3d) electron microscopy (EM) and ex vivo dMRI. Sensitivity is evaluated by how close each SM metric is to its histological counterpart, and specificity by how independent it is from other, non-corresponding histological features. This comparison reveals that SM is sensitive and specific to microscopic properties, clearing the way for the clinical adoption of in vivo dMRI derived SM parameters as biomarkers for neurological disorders.

3.
Front Neurosci ; 17: 1147547, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214391

RESUMEN

Introduction: Deep brain stimulation (DBS) is a rapidly developing therapeutic intervention with constantly expanding neurological and psychiatric indications. A major challenge for the approach is the precise targeting and limitation of the effect on the desired neural pathways. We have introduced a new approach, orientation selective stimulation (OSS) that allows free rotation of the induced electric field on a plane when using a probe with three parallel electrodes forming an equilateral triangle at the tip. Here, we expand the technique by introducing a tetrahedral stimulation probe that enables adjustment of the primary electric field direction freely at any angle in a 3D space around the stimulating probe. OSS in 3D will enable better targeting of the electric field according to the local brain anatomy. We tested its utility in a rat model of DBS for treatment-resistant depression. The stimulation directed to the subgenual anterior cingulate cortex (sgACC) has yielded dramatic improvement in individual patients suffering from therapy resistant depression, but no consistent benefit in larger series. This failure has been ascribed to the challenging anatomy of sgACC with several crossing neural tracts and individual differences in the local anatomy. Methods: We stimulated infralimbic cortex (IL), the rat analog of sgACC, and recorded local electrical responses in amygdala (AMG) that is monosynaptically connected to IL and plays a central role in emotional states. We further traced AMG-IL connections using a viral vector and tractography using diffusion magnetic resonance imaging (MRI). Finally, we mimicked the clinical situation by delivering sustained 130 Hz stimulation at IL at the most effective field orientation and followed changes in resting-state functional connectivity with IL using functional MRI. To help interpretation of responses in functional connectivity, we stimulated only the left IL, which we did not expect to evoke measurable changes in the rat behavior. Results: The AMG evoked responses depended systematically on the IL stimulation field orientation and yielded the maximum response in near vertical field orientation in accordance with tractography. Sustained 130 Hz stimulation at a field orientation yielding the strongest AMG evoked responses increased functional connectivity between IL and AMG on the stimulation side. Conclusion: These findings suggest that OSS in 3D provides a new approach to optimize the DBS for every individual patient with a single stimulation probe implantation.

4.
Neuropsychopharmacology ; 48(10): 1532-1540, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36949148

RESUMEN

Differential expression of myelin-related genes and changes in myelin thickness have been demonstrated in mice after chronic psychosocial stress, a risk factor for anxiety disorders. To determine whether and how stress affects structural remodeling of nodes of Ranvier, another form of myelin plasticity, we developed a 3D reconstruction analysis of node morphology in C57BL/6NCrl and DBA/2NCrl mice. We identified strain-dependent effects of chronic social defeat stress on node morphology in the medial prefrontal cortex (mPFC) gray matter, including shortening of paranodes in C57BL/6NCrl stress-resilient and shortening of node gaps in DBA/2NCrl stress-susceptible mice compared to controls. Neuronal activity has been associated with changes in myelin thickness. To investigate whether neuronal activation is a mechanism influencing also node of Ranvier morphology, we used DREADDs to repeatedly activate the ventral hippocampus-to-mPFC pathway. We found reduced anxiety-like behavior and shortened paranodes specifically in stimulated, but not in the nearby non-stimulated axons. Altogether, our data demonstrate (1) nodal remodeling of the mPFC gray matter axons after chronic stress and (2) axon-specific regulation of paranodes in response to repeated neuronal activity in an anxiety-associated pathway. Nodal remodeling may thus contribute to aberrant circuit function associated with anxiety disorders.


Asunto(s)
Trastornos de Ansiedad , Ansiedad , Ratones , Animales , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ansiedad/metabolismo , Trastornos de Ansiedad/metabolismo , Estrés Psicológico/metabolismo , Corteza Prefrontal/metabolismo
5.
Sci Rep ; 13(1): 2219, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755032

RESUMEN

Our study explores the potential of conventional and advanced diffusion MRI techniques including diffusion tensor imaging (DTI), and single-shell 3-tissue constrained spherical deconvolution (SS3T-CSD) to investigate complex microstructural changes following severe traumatic brain injury in rats at a chronic phase. Rat brains after sham-operation or lateral fluid percussion (LFP) injury were scanned ex vivo in a 9.4 T scanner. Our region-of-interest-based approach of tensor-, and SS3T-CSD derived fixel-, 3-tissue signal fraction maps were sensitive to changes in both white matter (WM) and grey matter (GM) areas. Tensor-based measures, such as fractional anisotropy (FA) and radial diffusivity (RD), detected more changes in WM and GM areas as compared to fixel-based measures including apparent fiber density (AFD), peak FOD amplitude and primary fiber bundle density, while 3-tissue signal fraction maps revealed distinct changes in WM, GM, and phosphate-buffered saline (PBS) fractions highlighting the complex tissue microstructural alterations post-trauma. Track-weighted imaging demonstrated changes in track morphology including reduced curvature and average pathlength distal from the primary lesion in severe TBI rats. In histological analysis, changes in the diffusion MRI measures could be associated to decreased myelin density, loss of myelinated axons, and increased cellularity, revealing progressive microstructural alterations in these brain areas five months after injury. Overall, this study highlights the use of combined conventional and advanced diffusion MRI measures to obtain more precise insights into the complex tissue microstructural alterations in chronic phase of severe brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Sustancia Blanca , Ratas , Animales , Imagen de Difusión Tensora/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología
6.
J Neuropathol Exp Neurol ; 82(1): 71-83, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36331507

RESUMEN

Diffusion tensor imaging (DTI) has demonstrated the potential to assess the pathophysiology of mild traumatic brain injury (mTBI) but correlations of DTI findings and pathological changes in mTBI are unclear. We evaluated the potential of ex vivo DTI to detect tissue damage in a mild mTBI rat model by exploiting multiscale imaging methods, histology and scanning micro-X-ray diffraction (SµXRD) 35 days after sham-operation (n = 2) or mTBI (n = 3). There were changes in DTI parameters rostral to the injury site. When examined by histology and SµXRD, there was evidence of axonal damage, reduced myelin density, gliosis, and ultrastructural alterations in myelin that were ongoing at the experimental time point of 35 days postinjury. We assessed the relationship between the 3 imaging modalities by multiple linear regression analysis. In this analysis, DTI and histological parameters were moderately related, whereas SµXRD parameters correlated weakly with DTI and histology. These findings suggest that while DTI appears to distinguish tissue changes at the microstructural level related to the loss of myelinated axons and gliosis, its ability to visualize alterations in myelin ultrastructure is limited. The use of several imaging techniques represents a novel approach to reveal tissue damage and provides new insights into mTBI detection.


Asunto(s)
Conmoción Encefálica , Ratas , Animales , Conmoción Encefálica/patología , Imagen de Difusión Tensora/métodos , Gliosis/patología , Axones/patología , Vaina de Mielina/patología , Encéfalo/patología
7.
Biomedicines ; 10(11)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36359242

RESUMEN

It is necessary to develop reliable biomarkers for epileptogenesis and cognitive impairment after traumatic brain injury when searching for novel antiepileptogenic and cognition-enhancing treatments. We hypothesized that a multiparametric magnetic resonance imaging (MRI) analysis along the septotemporal hippocampal axis could predict the development of post-traumatic epilepsy and cognitive impairment. We performed quantitative T2 and T2* MRIs at 2, 7 and 21 days, and diffusion tensor imaging at 7 and 21 days after lateral fluid-percussion injury in male rats. Morris water maze tests conducted between 35-39 days post-injury were used to diagnose cognitive impairment. One-month-long continuous video-electroencephalography monitoring during the 6th post-injury month was used to diagnose epilepsy. Single-parameter and regularized multiple linear regression models were able to differentiate between sham-operated and brain-injured rats. In the ipsilateral hippocampus, differentiation between the groups was achieved at most septotemporal locations (cross-validated area under the receiver operating characteristic curve (AUC) 1.0, 95% confidence interval 1.0-1.0). In the contralateral hippocampus, the highest differentiation was evident in the septal pole (AUC 0.92, 95% confidence interval 0.82-0.97). Logistic regression analysis of parameters imaged at 3.4 mm from the contralateral hippocampus's temporal end differentiated between the cognitively impaired rats and normal rats (AUC 0.72, 95% confidence interval 0.55-0.84). Neither single nor multiparametric approaches could identify the rats that would develop post-traumatic epilepsy. Multiparametric MRI analysis of the hippocampus can be used to identify cognitive impairment after an experimental traumatic brain injury. This information can be used to select subjects for preclinical trials of cognition-improving interventions.

8.
Curr Probl Cardiol ; 47(12): 101392, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36100093

RESUMEN

Mycobacterium chimaera is an opportunistic and emerging pathogen, which has been recognized to cause prosthetic valve infective endocarditis and disseminated infection following open-chest cardiac surgery with certain contaminated heater-cooler systems. Diagnostic evaluation of suspected prosthetic valve infective endocarditis due to M chimaera is challenging and requires a very high index of suspicion. This systematic review aims to evaluate prosthetic valve infective endocarditis due to M chimaera. Based on the current literature review, transesophageal echocardiography and 18F-fluorodeoxyglucose positron emission tomography/computed tomography are the most common imaging modalities used to establish the diagnosis. Based on 22 published cases, the reported cases of M chimaera endocarditis have occurred almost entirely in males. Within this cohort, the patients developed endocarditis on average 2.7 years after exposure to contaminated heater-cooler systems during cardiac surgery. M chimaera infection is associated with significant morbidity and mortality.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Endocarditis , Prótesis Valvulares Cardíacas , Mycobacterium , Masculino , Humanos , Endocarditis/diagnóstico por imagen , Endocarditis/etiología , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Prótesis Valvulares Cardíacas/efectos adversos , Prótesis Valvulares Cardíacas/microbiología
9.
Front Neurosci ; 16: 944432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35968364

RESUMEN

Non-invasive magnetic resonance imaging (MRI) methods have proved useful in the diagnosis and prognosis of neurodegenerative diseases. However, the interpretation of imaging outcomes in terms of tissue pathology is still challenging. This study goes beyond the current interpretation of in vivo diffusion tensor imaging (DTI) by constructing multivariate models of quantitative tissue microstructure in status epilepticus (SE)-induced brain damage. We performed in vivo DTI and histology in rats at 79 days after SE and control animals. The analyses focused on the corpus callosum, hippocampal subfield CA3b, and layers V and VI of the parietal cortex. Comparison between control and SE rats indicated that a combination of microstructural tissue changes occurring after SE, such as cellularity, organization of myelinated axons, and/or morphology of astrocytes, affect DTI parameters. Subsequently, we constructed a multivariate regression model for explaining and predicting histological parameters based on DTI. The model revealed that DTI predicted well the organization of myelinated axons (cross-validated R = 0.876) and astrocyte processes (cross-validated R = 0.909) and possessed a predictive value for cell density (CD) (cross-validated R = 0.489). However, the morphology of astrocytes (cross-validated R > 0.05) was not well predicted. The inclusion of parameters from CA3b was necessary for modeling histopathology. Moreover, the multivariate DTI model explained better histological parameters than any univariate model. In conclusion, we demonstrate that combining several analytical and statistical tools can help interpret imaging outcomes to microstructural tissue changes, opening new avenues to improve the non-invasive diagnosis and prognosis of brain tissue damage.

10.
NMR Biomed ; 35(12): e4804, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35892279

RESUMEN

Filter-exchange imaging (FEXI) has already been utilized in several biomedical studies for evaluating the permeability of cell membranes. The method relies on suppressing the extracellular signal using strong diffusion weighting (the mobility filter causing a reduction in the overall diffusivity) and monitoring the subsequent diffusivity recovery. Using Monte Carlo simulations, we demonstrate that FEXI is sensitive not uniquely to the transcytolemmal exchange but also to the geometry of involved compartments: complex geometry offers locations where spins remain unaffected by the mobility filter; moving to other locations afterwards, such spins contribute to the diffusivity recovery without actually permeating any membrane. This exchange mechanism is a warning for those who aim to use FEXI in complex media such as brain gray matter and opens wide scope for investigation towards crystallizing the genuine membrane permeation and characterizing the compartment geometry.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética/métodos , Método de Montecarlo , Difusión
11.
Sci Rep ; 12(1): 8804, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614095

RESUMEN

A system of lymphatic vessels has been recently characterized in the meninges, with a postulated role in 'cleaning' the brain via cerebral fluid drainage. As meninges are the origin site of migraine pain, we hypothesized that malfunctioning of the lymphatic system should affect the local trigeminal nociception. To test this hypothesis, we studied nociceptive and inflammatory mechanisms in the hemiskull preparations (containing the meninges) of K14-VEGFR3-Ig (K14) mice lacking the meningeal lymphatic system. We recorded the spiking activity of meningeal afferents and estimated the local mast cells population, calcitonin gene-related peptide (CGRP) and cytokine levels as well as the dural trigeminal innervation in freshly-isolated hemiskull preparations from K14-VEGFR3-Ig (K14) or wild type C57BL/6 mice (WT). Spiking activity data have been confirmed in an acquired model of meningeal lymphatic dysfunction (AAV-mVEGFR3(1-4)Ig induced lymphatic ablation). We found that levels of the pro-inflammatory cytokine IL12-p70 and CGRP, implicated in migraine, were reduced in the meninges of K14 mice, while the levels of the mast cell activator MCP-1 were increased. The other migraine-related pro-inflammatory cytokines (basal and stimulated), did not differ between the two genotypes. The patterns of trigeminal innervation in meninges remained unchanged and we did not observe alterations in basal or ATP-induced nociceptive firing in the meningeal afferents associated with meningeal lymphatic dysfunction. In summary, the lack of meningeal lymphatic system is associated with a new balance between pro- and anti-migraine mediators but does not directly trigger meningeal nociceptive state.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Trastornos Migrañosos , Animales , Citocinas , Inflamación , Sistema Linfático , Meninges , Ratones , Ratones Endogámicos C57BL , Nocicepción
12.
Sci Rep ; 12(1): 8565, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35595790

RESUMEN

The recently introduced orientation selective deep brain stimulation (OS-DBS) technique freely controls the direction of the electric field's spatial gradient by using multiple contacts with independent current sources within a multielectrode array. The goal of OS-DBS is to align the electrical field along the axonal track of interest passing through the stimulation site. Here we utilized OS-DBS with a planar 3-channel electrode for stimulating the rat entorhinal cortex (EC) and medial septal nucleus (MSN), two promising areas for DBS treatment of Alzheimer's disease. The brain responses to OS-DBS were monitored by whole brain functional magnetic resonance imaging (fMRI) at 9.4 T with Multi-Band Sweep Imaging with Fourier Transformation (MB-SWIFT). Varying the in-plane OS-DBS stimulation angle in the EC resulted in activity modulation of multiple downstream brain areas involved in memory and cognition. Contrary to that, no angle dependence of brain activations was observed when stimulating the MSN, consistent with predictions based on the electrode configuration and on the main axonal directions of the targets derived from diffusion MRI tractography and histology. We conclude that tuning the OS-DBS stimulation angle modulates the activation of brain areas relevant to Alzheimer's disease, thus holding great promise in the DBS treatment of the disease.


Asunto(s)
Enfermedad de Alzheimer , Estimulación Encefálica Profunda , Núcleos Septales , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/terapia , Animales , Encéfalo , Cognición , Estimulación Encefálica Profunda/métodos , Corteza Entorrinal/diagnóstico por imagen , Corteza Entorrinal/fisiología , Imagen por Resonancia Magnética/métodos , Ratas
13.
Comput Methods Programs Biomed ; 220: 106802, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35436661

RESUMEN

BACKGROUND AND OBJECTIVE: Advances in electron microscopy (EM) now allow three-dimensional (3D) imaging of hundreds of micrometers of tissue with nanometer-scale resolution, providing new opportunities to study the ultrastructure of the brain. In this work, we introduce a freely available Matlab-based gACSON software for visualization, segmentation, assessment, and morphology analysis of myelinated axons in 3D-EM volumes of brain tissue samples. METHODS: The software is equipped with a graphical user interface (GUI). It automatically segments the intra-axonal space of myelinated axons and their corresponding myelin sheaths and allows manual segmentation, proofreading, and interactive correction of the segmented components. gACSON analyzes the morphology of myelinated axons, such as axonal diameter, axonal eccentricity, myelin thickness, or g-ratio. RESULTS: We illustrate the use of the software by segmenting and analyzing myelinated axons in six 3D-EM volumes of rat somatosensory cortex after sham surgery or traumatic brain injury (TBI). Our results suggest that the equivalent diameter of myelinated axons in somatosensory cortex was decreased in TBI animals five months after the injury. CONCLUSION: Our results indicate that gACSON is a valuable tool for visualization, segmentation, assessment, and morphology analysis of myelinated axons in 3D-EM volumes. It is freely available at https://github.com/AndreaBehan/g-ACSON under the MIT license.


Asunto(s)
Axones , Lesiones Traumáticas del Encéfalo , Animales , Axones/ultraestructura , Microscopía Electrónica , Vaina de Mielina/ultraestructura , Ratas , Programas Informáticos
14.
Oxf Med Case Reports ; 2022(3): omac020, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35316993

RESUMEN

Periodic paralysis is a rare muscle disease that manifests as episodes of painless muscle weakness, and the hypokalemic form is commonly associated with hyperthyroidism. Most tachyarrhythmias related with thyrotoxicosis include sinus tachycardia and atrial fibrillation, but an association between thyrotoxic hypokalemic periodic paralysis and typical atrial flutter has seldomly been documented. Here, we present the case of a young male who was diagnosed with thyrotoxic periodic paralysis causing cavotricuspid isthmus-dependent atrial flutter, successfully treated with diltiazem, propranolol, methimazole, potassium iodine (SSK) and rivaroxaban.

16.
Front Neurosci ; 15: 746214, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899158

RESUMEN

Our study investigates the potential of diffusion MRI (dMRI), including diffusion tensor imaging (DTI), fixel-based analysis (FBA) and neurite orientation dispersion and density imaging (NODDI), to detect microstructural tissue abnormalities in rats after mild traumatic brain injury (mTBI). The brains of sham-operated and mTBI rats 35 days after lateral fluid percussion injury were imaged ex vivo in a 11.7-T scanner. Voxel-based analyses of DTI-, fixel- and NODDI-based metrics detected extensive tissue changes in directly affected brain areas close to the primary injury, and more importantly, also in distal areas connected to primary injury and indirectly affected by the secondary injury mechanisms. Histology revealed ongoing axonal abnormalities and inflammation, 35 days after the injury, in the brain areas highlighted in the group analyses. Fractional anisotropy (FA), fiber density (FD) and fiber density and fiber bundle cross-section (FDC) showed similar pattern of significant areas throughout the brain; however, FA showed more significant voxels in gray matter areas, while FD and FDC in white matter areas, and orientation dispersion index (ODI) in areas most damage based on histology. Region-of-interest (ROI)-based analyses on dMRI maps and histology in selected brain regions revealed that the changes in MRI parameters could be attributed to both alterations in myelinated fiber bundles and increased cellularity. This study demonstrates that the combination of dMRI methods can provide a more complete insight into the microstructural alterations in white and gray matter after mTBI, which may aid diagnosis and prognosis following a mild brain injury.

17.
Rev. colomb. cienc. pecu ; 34(4): 278-290, Oct.-Dec. 2021. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1408029

RESUMEN

Abstract Background: Two biotypes of Aberdeen Angus cattle breed, known as Old Type and New Type, that differ in their origin and beef production are formally recognized. In Colombia, this breed has been commercialized for approximately 80 years. Studies on the origin, kinship and levels of genetic diversity of this breed in Colombian herds are scarce, yet important for planning crossing and management strategies. Objective: To measure the genetic diversity and structure of two Colombian herds of Old Type and New Type biotypes of Aberdeen Angus from Huila and Cundinamarca provinces and assess mitochondrial introgression with other breeds. Methods: A set of ten microsatellites and sequences of the Mitochondrial Control Region were characterized. Estimators of genetic diversity and population differentiation along with tests of population assignment were applied. Results: Nuclear loci were highly polymorphic as shown by the Polymorphic Information Content (0.599) and the Probability of Identity (1.896 10-08). Both populations were highly diverse and clearly differentiated into two groups corresponding to the Old Type and New Type phenotypes. In contrast, mitochondrial data failed to distinguish these two groups and showed extensive admixture. Conclusions: This study optimized a set of ten highly polymorphic nuclear markers that may be used for parentage and population genetic studies of Aberdeen Angus. Genetic differentiation in these loci agreed with phenotypic differences of the Old and New Types. However, mitochondrial data indicated ancestry of multiple European breeds in the origin of Colombian Aberdeen Angus.


Resumen Antecedentes: Dentro de la raza Aberdeen Angus existen dos biotipos conocidos como Old Type y New Type, las cuales difieren en su origen y producción de carne. En Colombia, esta raza se ha venido comercializando desde hace aproximadamente 80 años. No obstante, aún no se han realizado estudios sobre su origen, parentesco y niveles de diversidad genética de esta raza en hatos colombianos, lo cual es importante para planear estrategias de cruce y manejo. Objetivo: Medir la diversidad y estructura genética de dos hatos colombianos de Aberdeen Angus Old Type y New Type de Huila y Cundinamarca y evaluar la introgresión mitocondrial con otras razas. Métodos: Se caracterizó un grupo de diez loci microsatélite y se secuenció la Región Control Mitocondrial. Se aplicaron estimadores de diversidad genética y diferenciación poblacional, junto con pruebas de asignación poblacional. Resultados: Los loci microsatélite fueron altamente polimórficos, tal como lo indicaron el Contenido de Información Polimórfica (0,599) y la Probabilidad de Identidad (1,896 10-08). Las poblaciones evaluadas de Aberdeen Angus en Colombia fueron altamente diversas y se diferenciaron claramente en dos grupos correspondientes a los fenotipos Old Type y New Type. En contraste, los datos mitocondriales no recobraron estos dos grupos y mostraron una amplia mezcla genética. Conclusiones: Este estudio optimizó un grupo de diez marcadores altamente polimórficos que pueden ser usados para estudios de parentesco y genética poblacional de Aberdeen Angus. La diferenciación genética en loci nucleares concordó con las diferencias fenotípicas entre Old y New Types, pero los datos mitocondriales indicaron ancestría de múltiples razas europeas en el origen del Aberdeen Angus colombiano.


Resumo Antecedentes: Dentro da raça Aberdeen Angus há dois biótipos conhecidos como Old Type e New Type, que diferem em sua origem e produção de carne. Na Colômbia, esta raça é comercializada há aproximadamente 80 anos. Entretanto, estudos sobre a origem, o parentesco e os níveis de diversidade genética desta raça em rebanhos colombianos ainda não foram realizados, o que é importante para o planejamento de cruzamentos e estratégias de manejo. Objetivo: Medir a diversidade genética e a estrutura de dois rebanhos colombianos de biótipos de Old Type e New Type de Aberdeen Angus de Huila e Cundinamarca e avaliar a introgressão mitocondrial com outras raças. Métodos: Um grupo de dez loci de microssatélites foi caracterizado e a Região de Controle Mitocondrial foi sequenciada. As estimativas de diversidade genética e diferenciação populacional foram aplicadas, juntamente com testes de designação populacional. Resultados: Os locus microssatélites foram altamente polimórficos, conforme indicado pelo Conteúdo de Infomação Polimórfica (0,599) e Probabilidade de Identidade (1,896 10-08). As populações avaliadas de Aberden Angus na Colômbia eram altamente diversificadas e claramente diferenciadas em dois grupos correspondentes aos fenótipos do Old Type e New Type. Em contraste, os dados mitocondriais não recuperaram esses dois grupos e mostraram um amplo mix genético. Conclusões: Este estudo otimizou um grupo de dez marcadores altamente polimórficos que podem ser usados para estudos genéticos de parentesco e população de Aberdeen Angus. A diferenciação genética nos loci nucleares concordou com as diferenças fenotípicas entre os Old e New Types, mas os dados mitocondriais indicam ancestralidade de várias raças européias na origem do Aberdeen Angus colombiano.

18.
Epilepsy Res ; 176: 106730, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34364020

RESUMEN

Pathophysiological consequences of focal non-convulsive status epilepticus (fNCSE) have been difficult to demonstrate in humans. In rats fNCSE pathology has been identified in the eyes. Here we evaluated the use of high-resolution 7 T structural T1-weighted magnetic resonance imaging (MRI) and 9.4 T diffusion tensor imaging (DTI) for detecting hippocampal fNCSE-induced retinal pathology ex vivo in mice. Seven weeks post-fNCSE, increased number of Iba1+ microglia were evident in the retina ipsilateral to the hemisphere with fNCSE, and morphologically more activated microglia were found in both ipsi- and contralateral retina compared to non-stimulated control mice. T1-weighted intensity measurements of the contralateral retina showed a minor increase within the outer nuclear and plexiform layers of the lateral retina. T1-weighted measurements were not performed in the ipsilateral retina due to technical difficulties. DTI fractional anisotropy(FA) values were discretely altered in the lateral part of the ipsilateral retina and unaltered in the contralateral retina. No changes were observed in the distal part of the optic nerve. The sensitivity of both imaging techniques for identifying larger retinal alteration was confirmed ex vivo in retinitis pigmentosa mice where a substantial neurodegeneration of the outer retinal layers is evident. With MR imaging a 50 % decrease in DTI FA values and significantly thinner retina in T1-weighted images were detected. We conclude that retinal pathology after fNCSE in mice is subtle and present bilaterally. High-resolution T1-weighted MRI and DTI independently did not detect the entire pathological retinal changes after fNCSE, but the combination of the two techniques indicated minor patchy structural changes.


Asunto(s)
Imagen de Difusión Tensora , Estado Epiléptico , Animales , Anisotropía , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Ratones , Ratas , Retina/diagnóstico por imagen , Estado Epiléptico/patología
19.
Epilepsia ; 62(8): 1852-1864, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34245005

RESUMEN

OBJECTIVE: To identify magnetic resonance imaging (MRI) biomarkers for post-traumatic epilepsy. METHODS: The EPITARGET (Targets and biomarkers for antiepileptogenesis, epitarget.eu) animal cohort completing T2 relaxation and diffusion tensor MRI follow-up and 1-month-long video-electroencephalography monitoring included 98 male Sprague-Dawley rats with traumatic brain injury and 18 controls. T2 imaging was performed on day (D) 2, D7, and D21 and diffusion tensor imaging (DTI) on D7 and D21 using a 7-Tesla Bruker PharmaScan MRI scanner. The mean and standard deviation (SD) of the T2 relaxation rate, multiple diffusivity measures, and diffusion anisotropy at each time-point within the ventroposterolateral and ventroposteromedial thalamus were used as predictor variables in multi-variable logistic regression models to distinguish rats with and without epilepsy. RESULTS: Twenty-nine percent (28/98) of the rats with traumatic brain injury (TBI) developed epilepsy. The best-performing logistic regression model utilized the D2 and D7 T2 relaxation time as well as the D7 diffusion tensor data. The model distinguished rats with and without epilepsy (Bonferroni-corrected p-value < .001) with a cross-validated concordance statistic of 0.74 (95% confidence interval [CI] 0.60-0.84). In a cross-validated classification test, the model exhibited 54% sensitivity and 91% specificity, enriching the epilepsy rate within the study population from the expected 29% to 71%. A model using the D2 T2 data only resulted in a 73% enriched epilepsy rate (regression p-value .007, cross-validated concordance 0.70, 95% CI 0.56-0.80, sensitivity 29%, specificity 96%). SIGNIFICANCE: An MRI parameter set reporting on acute and subacute neuropathologic changes common to experimental and human TBI presents a diagnostic biomarker for post-traumatic epileptogenesis. Significant enrichment of the study population was achieved even when using a single time-point measurement, producing an expected epilepsy rate of 73%.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Epilepsia , Animales , Biomarcadores , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Imagen de Difusión Tensora , Modelos Animales de Enfermedad , Epilepsia/diagnóstico por imagen , Epilepsia/etiología , Humanos , Masculino , Pronóstico , Ratas , Ratas Sprague-Dawley , Tálamo/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...