Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cardiovasc Res ; 119(8): 1728-1739, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37036809

RESUMEN

AIMS: Congenital heart disease (CHD) is the most common genetic birth defect, which has considerable morbidity and mortality. We focused on deciphering key regulators that govern cardiac progenitors and cardiogenesis. FOXK1 is a forkhead/winged helix transcription factor known to regulate cell cycle kinetics and is restricted to mesodermal progenitors, somites, and heart. In the present study, we define an essential role for FOXK1 during cardiovascular development. METHODS AND RESULTS: We used the mouse embryoid body system to differentiate control and Foxk1 KO embryonic stem cells into mesodermal, cardiac progenitor cells and mature cardiac cells. Using flow cytometry, immunohistochemistry, cardiac beating, transcriptional and chromatin immunoprecipitation quantitative polymerase chain reaction assays, bulk RNA sequencing (RNAseq) and assay for transposase-accessible chromatin using sequencing (ATACseq) analyses, FOXK1 was observed to be an important regulator of cardiogenesis. Flow cytometry analyses revealed perturbed cardiogenesis in Foxk1 KO embryoid bodies (EBs). Bulk RNAseq analysis at two developmental stages showed a significant reduction of the cardiac molecular program in Foxk1 KO EBs compared to the control EBs. ATACseq analysis during EB differentiation demonstrated that the chromatin landscape nearby known important regulators of cardiogenesis was significantly relaxed in control EBs compared to Foxk1 KO EBs. Furthermore, we demonstrated that in the absence of FOXK1, cardiac differentiation was markedly impaired by assaying for cardiac Troponin T expression and cardiac contractility. We demonstrate that FOXK1 is an important regulator of cardiogenesis by repressing the Wnt/ß-catenin signalling pathway and thereby promoting differentiation. CONCLUSION: These results identify FOXK1 as an essential transcriptional and epigenetic regulator of cardiovascular development. Mechanistically, FOXK1 represses Wnt signalling to promote the development of cardiac progenitor cells.


Asunto(s)
Células Madre Embrionarias , Corazón , Animales , Ratones , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Vía de Señalización Wnt
2.
Front Cardiovasc Med ; 9: 972591, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36082116

RESUMEN

Cardiovascular disease (CVD) remains the number one cause of death worldwide. Ischemic heart disease contributes to heart failure and has considerable morbidity and mortality. Therefore, alternative therapeutic strategies are urgently needed. One class of epigenetic regulators known as pioneer factors has emerged as an important tool for the development of regenerative therapies for the treatment of CVD. Pioneer factors bind closed chromatin and remodel it to drive lineage specification. Here, we review pioneer factors within the cardiovascular lineage, particularly during development and reprogramming and highlight the implications this field of research has for the future development of cardiac specific regenerative therapies.

3.
Nat Cell Biol ; 24(5): 672-684, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35550615

RESUMEN

The vasculature is an essential organ for the delivery of blood and oxygen to all tissues of the body and is thus relevant to the treatment of ischaemic diseases, injury-induced regeneration and solid tumour growth. Previously, we demonstrated that ETV2 is an essential transcription factor for the development of cardiac, endothelial and haematopoietic lineages. Here we report that ETV2 functions as a pioneer factor that relaxes closed chromatin and regulates endothelial development. By comparing engineered embryonic stem cell differentiation and reprogramming models with multi-omics techniques, we demonstrated that ETV2 was able to bind nucleosomal DNA and recruit BRG1. BRG1 recruitment remodelled chromatin around endothelial genes and helped to maintain an open configuration, resulting in increased H3K27ac deposition. Collectively, these results will serve as a platform for the development of therapeutic initiatives directed towards cardiovascular diseases and solid tumours.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción , Diferenciación Celular/genética , Cromatina , Nucleosomas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-34285710

RESUMEN

INTRODUCTION: The roles of angiotensin II (Ang II) in the brain are still under investigation. In this study, we investigated if Ang II influences differentiation of human neuroblastoma cells with simultaneous activation of NADPH oxidase and reactive oxygen species (ROS). Moreover, we investigated the Ang II receptor type involved during differentiation. METHODS: Human neuroblastoma cells (SH-SY5Y; 5 × 105 cells) were exposed to Ang II (600 nM) for 24 h. Differentiation was monitored by measuring MAP2 and NF-H levels. Cell size and ROS were analyzed by flow cytometry, and NADPH oxidase activation was assayed using apocynin (500 µM). Ang II receptors (ATR) activation was assayed using ATR blockers or Ang II metabolism inhibitors (10-7 M). RESULTS: (1) Cell size decreased significantly in Ang II-treated cells; (2) MAP2 and ROS increased significantly in Ang II-treated cells with no changes in viability; (3) MAP2 and ROS decreased significantly in cells incubated with Ang II plus apocynin. (4) A significant decrease in MAP2 was observed in cells exposed to Ang II plus PD123.319 (AT2R blocker). CONCLUSION: Our findings suggest that Ang II influences differentiation of SH-SY5Y by increasing MAP2 through the AT2R. The increase in MAP2 and ROS were also mediated through NADPH oxidase with no cell death.


Asunto(s)
Angiotensina II , Neuroblastoma , Angiotensina II/metabolismo , Diferenciación Celular , Humanos , Proteínas Asociadas a Microtúbulos , NADPH Oxidasas , Especies Reactivas de Oxígeno
5.
Arterioscler Thromb Vasc Biol ; 40(12): 2875-2890, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115267

RESUMEN

OBJECTIVE: Endothelial progenitors migrate early during embryogenesis to form the primary vascular plexus. The regulatory mechanisms that govern their migration are not completely defined. Here, we describe a novel role for ETV2 (Ets variant transcription factor 2) in cell migration and provide evidence for an ETV2-Rhoj network as a mechanism responsible for this process. Approach and Results: Analysis of RNAseq datasets showed robust enrichment of migratory/motility pathways following overexpression of ETV2 during mesodermal differentiation. We then analyzed ETV2 chromatin immunoprecipitation-seq and assay for transposase accessible chromatin-seq datasets, which showed enrichment of chromatin immunoprecipitation-seq peaks with increased chromatin accessibility in migratory genes following overexpression of ETV2. Migratory assays showed that overexpression of ETV2 enhanced cell migration in mouse embryonic stem cells, embryoid bodies, and mouse embryonic fibroblasts. Knockout of Etv2 led to migratory defects of Etv2-EYFP+ angioblasts to their predefined regions of developing embryos relative to wild-type controls at embryonic day (E) 8.5, supporting its role during migration. Mechanistically, we showed that ETV2 binds the promoter region of Rhoj serving as an upstream regulator of cell migration. Single-cell RNAseq analysis of Etv2-EYFP+ sorted cells revealed coexpression of Etv2 and Rhoj in endothelial progenitors at E7.75 and E8.25. Overexpression of ETV2 led to a robust increase in Rhoj in both embryoid bodies and mouse embryonic fibroblasts, whereas, its expression was abolished in the Etv2 knockout embryoid bodies. Finally, shRNA-mediated knockdown of Rhoj resulted in migration defects, which were partially rescued by overexpression of ETV2. CONCLUSIONS: These results define an ETV2-Rhoj cascade, which is important for the regulation of endothelial progenitor cell migration.


Asunto(s)
Movimiento Celular , Células Madre Embrionarias/enzimología , Células Progenitoras Endoteliales/enzimología , Factores de Transcripción/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Células Cultivadas , Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Edad Gestacional , Ratones Transgénicos , Transducción de Señal , Factores de Transcripción/genética , Proteínas de Unión al GTP rho/genética
6.
Sci Rep ; 9(1): 9736, 2019 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-31278282

RESUMEN

Etv2, an Ets-transcription factor, governs the specification of the earliest hemato-endothelial progenitors during embryogenesis. While the transcriptional networks during hemato-endothelial development have been well described, the mechanistic details are incompletely defined. In the present study, we described a new role for Etv2 as a regulator of cellular proliferation via Yes1 in mesodermal lineages. Analysis of an Etv2-ChIPseq dataset revealed significant enrichment of Etv2 peaks in the upstream regions of cell cycle regulatory genes relative to non-cell cycle genes. Our bulk-RNAseq analysis using the doxycycline-inducible Etv2 ES/EB system showed increased levels of cell cycle genes including E2f4 and Ccne1 as early as 6 h following Etv2 induction. Further, EdU-incorporation studies demonstrated that the induction of Etv2 resulted in a ~2.5-fold increase in cellular proliferation, supporting a proliferative role for Etv2 during differentiation. Next, we identified Yes1 as the top-ranked candidate that was expressed in Etv2-EYFP+ cells at E7.75 and E8.25 using single cell RNA-seq analysis. Doxycycline-mediated induction of Etv2 led to an increase in Yes1 transcripts in a dose-dependent fashion. In contrast, the level of Yes1 was reduced in Etv2 null embryoid bodies. Using bioinformatics algorithms, biochemical, and molecular biology techniques, we show that Etv2 binds to the promoter region of Yes1 and functions as a direct upstream transcriptional regulator of Yes1 during embryogenesis. These studies enhance our understanding of the mechanisms whereby Etv2 governs mesodermal fate decisions early during embryogenesis.


Asunto(s)
Cuerpos Embrioides/citología , Células Madre Embrionarias de Ratones/citología , Proteínas Proto-Oncogénicas c-yes/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Algoritmos , Animales , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cuerpos Embrioides/metabolismo , Desarrollo Embrionario , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-yes/metabolismo , Transducción de Señal , Urea/análogos & derivados , Urea/farmacología
7.
Front Neurol ; 10: 285, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30972014

RESUMEN

Previously, we found that high levels of soluble insulin receptor (sIR) in the cerebrospinal fluid (CSF) of an HIV-infected women cohort were associated with the presence and severity of HIV-associated neurocognitive disorders (HAND). In this study we investigated if CSF from this population, HIV-1 Tat, and selected cytokines induces sIR secretion from human neuronal cells. Twenty-three (23) HIV-seropositive women stratified by cognitive status and five HIV- seronegative women were evaluated. Soluble IR levels were measured in the extracellular medium of neuronal cells (SH-SY5Y) that were exposed (for 24 h) to the CSF of patients. The levels of sIR, HIV-1 Tat, and cytokine levels (IL-2, IL4, IL-6, IFNγ, TNFα, and IL-10) were quantified in the CSF of participants by ELISA and flow cytometry. Neuronal secretion of sIR was measured after exposure (24 h) to HIV-1 Tat (0.5-250 nM), or specific cytokines. The effects of TNFα and HIV-1 Tat on sIR secretion were also evaluated in the presence of R7050 (TNFα antagonist; 10 nM). Neurons exposed to the CSF of HIV-infected women had higher sIR levels according to the severity of neurocognitive impairment of the participant. Increased CSF sIR levels were associated with the presence and severity of HAND and were positively correlated with CSF HIV-1 Tat levels in HIV-infected women with cognitive impairment. CSF levels of IL-2, IFNγ, and TNFα were significantly increased with HAND. However, only TNFα (5 pg/mL) and HIV-1 Tat (100 nM) induced a significant increase in neuronal sIR secretion after 24 h exposure, an effect that was antagonized when each were combined with R7050. Our data suggests that TNFα and HIV-1 Tat from the CSF of HIV-infected women may regulate the secretion of sIR from neuronal cells and that the effect of HIV-1 Tat on sIR secretion may depend on TNFα receptor activation.

8.
Cell ; 171(3): 573-587.e14, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29033129

RESUMEN

Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery.


Asunto(s)
Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Histona Desacetilasas/metabolismo , Lámina Nuclear/metabolismo , Células Madre/citología , Animales , Genoma , Ratones , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...