Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecology ; 98(2): 583-590, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27864922

RESUMEN

We present new data and analyses revealing fundamental flaws in a critique of two recent meta-analyses of local-scale temporal biodiversity change. First, the conclusion that short-term time series lead to biased estimates of long-term change was based on two errors in the simulations used to support it. Second, the conclusion of negative relationships between temporal biodiversity change and study duration was entirely dependent on unrealistic model assumptions, the use of a subset of data, and inclusion of one outlier data point in one study. Third, the finding of a decline in local biodiversity, after eliminating post-disturbance studies, is not robust to alternative analyses on the original data set, and is absent in a larger, updated data set. Finally, the undebatable point, noted in both original papers, that studies in the ecological literature are geographically biased, was used to cast doubt on the conclusion that, outside of areas converted to croplands or asphalt, the distribution of biodiversity trends is centered approximately on zero. Future studies may modify conclusions, but at present, alternative conclusions based on the geographic-bias argument rely on speculation. In sum, the critique raises points of uncertainty typical of all ecological studies, but does not provide an evidence-based alternative interpretation.


Asunto(s)
Biodiversidad , Ecología , Incertidumbre
2.
Science ; 344(6181): 296-9, 2014 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-24744374

RESUMEN

The extent to which biodiversity change in local assemblages contributes to global biodiversity loss is poorly understood. We analyzed 100 time series from biomes across Earth to ask how diversity within assemblages is changing through time. We quantified patterns of temporal α diversity, measured as change in local diversity, and temporal ß diversity, measured as change in community composition. Contrary to our expectations, we did not detect systematic loss of α diversity. However, community composition changed systematically through time, in excess of predictions from null models. Heterogeneous rates of environmental change, species range shifts associated with climate change, and biotic homogenization may explain the different patterns of temporal α and ß diversity. Monitoring and understanding change in species composition should be a conservation priority.


Asunto(s)
Biodiversidad , Aves , Ecosistema , Peces , Invertebrados , Mamíferos , Plantas , Animales , Extinción Biológica , Especies Introducidas , Dinámica Poblacional , Factores de Tiempo
3.
PLoS One ; 7(5): e38404, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22693621

RESUMEN

The introduction of non-native species into new habitats poses a major threat to native populations. Of particular interest, though often overlooked, are introductions of populations that are not fully reproductively isolated from native individuals and can hybridize with them. To address this important topic we used different approaches in a multi-pronged study, combining the effects of mate choice, shoaling behaviour and genetics. Here we present evidence that behavioural traits such as shoaling and mate choice can promote population mixing if individuals do not distinguish between native and foreign conspecifics. We examined this in the context of two guppy (Poecilia reticulata) populations that have been subject to an introduction and subsequent population mixing event in Trinidad. The introduction of Guanapo River guppies into the Turure River more than 50 years ago led to a marked reduction of the original genotype. In our experiments, female guppies did not distinguish between shoaling partners when given the choice between native and foreign individuals. Introduced fish are therefore likely to benefit from the protection of a shoal and will improve their survival chances as a result. The additional finding that male guppies do not discriminate between females on the basis of origin will further increase the process of population mixing, especially if males encounter mixed shoals. In a mesocosm experiment, in which the native and foreign populations were allowed to mate freely, we found, as expected on the basis of these behavioural interactions, that the distribution of offspring genotypes could be predicted from the proportions of the two types of founding fish. This result suggests that stochastic and environmental processes have reinforced the biological ones to bring about the genetic dominance of the invading population in the Turure River. Re-sampling the Turure for genetic analysis using SNP markers confirmed the population mixing process and showed that it is an on-going process in this river and has led to the nearly complete disappearance of the original genotype.


Asunto(s)
Especies Introducidas , Poecilia/fisiología , Animales , Cruzamiento , Femenino , Genotipo , Geografía , Especies Introducidas/estadística & datos numéricos , Masculino , Poecilia/genética , Conducta Sexual Animal , Trinidad y Tobago
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...