Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 10: 1883, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31474963

RESUMEN

The investigation of microbial proteins by mass spectrometry (metaproteomics) is a key technology for simultaneously assessing the taxonomic composition and the functionality of microbial communities in medical, environmental, and biotechnological applications. We present an improved metaproteomics workflow using an updated sample preparation and a new version of the MetaProteomeAnalyzer software for data analysis. High resolution by multidimensional separation (GeLC, MudPIT) was sacrificed to aim at fast analysis of a broad range of different samples in less than 24 h. The improved workflow generated at least two times as many protein identifications than our previous workflow, and a drastic increase of taxonomic and functional annotations. Improvements of all aspects of the workflow, particularly the speed, are first steps toward potential routine clinical diagnostics (i.e., fecal samples) and analysis of technical and environmental samples. The MetaProteomeAnalyzer is provided to the scientific community as a central remote server solution at www.mpa.ovgu.de.

2.
Biotechnol Bioeng ; 107(2): 312-20, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20506129

RESUMEN

A purification scheme for cell culture-derived smallpox vaccines based on an orthogonal downstream process of pseudo-affinity membrane adsorbers (MA) and hydrophobic interaction chromatography (HIC) was investigated. The applied pseudo-affinity chromatography, based on reinforced sulfated cellulose and heparin-MA, was optimized in terms of dynamic binding capacities, virus yield and process productivity. HIC was introduced as a subsequent method to further reduce the DNA content. Therefore, two screens were undertaken. First, several HIC ligands were screened for different adsorption behavior between virus particles and DNA. Second, elution from pseudo-affinity MA and adsorption of virus particles onto the hydrophobic interaction matrix was explored by a series of buffers using different ammonium sulfate concentrations. Eventually, variations between different cultivation batches and buffer conditions were investigated.The most promising combination, a sulfated cellulose membrane adsorber with subsequent phenyl HIC resulted in overall virus particle recoveries ranging from 76% to 55% depending on the product batch and applied conditions. On average, 61% of the recovered virus particles were infective within all tested purification schemes and conditions. Final DNA content varied from 0.01% to 2.5% of the starting material and the level of contaminating protein was below 0.1%.


Asunto(s)
Cromatografía de Afinidad/métodos , Cromatografía Liquida/métodos , Virus Vaccinia/aislamiento & purificación , Técnicas de Cultivo de Célula , Interacciones Hidrofóbicas e Hidrofílicas , Membranas , Virus Vaccinia/crecimiento & desarrollo
3.
Biotechnol Bioeng ; 105(4): 761-9, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19891005

RESUMEN

Smallpox is an acute, highly infectious viral disease unique to humans, and responsible for an estimated 300-500 million deaths in the 20th century. Following successful vaccination campaigns through the 19th and 20th centuries, smallpox was declared eradicated by the World Health Organization in 1980. However, the threat of using smallpox as a biological weapon prompted efforts of some governments to produce smallpox vaccines for emergency preparedness. An additional aspect for the interest in smallpox virus is its potential use as a platform technology for vector vaccines. In particular, the latter requires a high safety level for routine applications. IMVAMUNE, a third generation smallpox vaccine based on the attenuated Modified Vaccinia Ankara (MVA) virus, demonstrates superior safety compared to earlier generations and represents therefore an interesting choice as viral vector. Current downstream production processes of Vaccinia virus and MVA are mainly based on labor-intensive centrifugation and filtration methods, requiring expensive nuclease treatment in order to achieve sufficient low host-cell DNA levels for human vaccines. This study compares different ion exchange and pseudo-affinity membrane adsorbers (MA) to capture chicken embryo fibroblast cell-derived MVA-BN after cell homogenization and clarification. In parallel, the overall performance of classical bead-based resin chromatography (Cellufine sulfate and Toyopearl AF-Heparin) was investigated. The two tested pseudo-affinity MA (i.e., sulfated cellulose and heparin) were superior over the applied ion exchange MA in terms of virus yield and contaminant depletion. Furthermore, studies confirmed an expected increase in productivity resulting from the increased volume throughput of MA compared to classical bead-based column chromatography methods. Overall virus recovery was approximately 60% for both pseudo-affinity MA and the Cellufine sulfate resin. Depletion of total protein ranged between 86% and 102% for all tested matrices. Remaining dsDNA in the product fraction varied between 24% and 7% for the pseudo-affinity chromatography materials. Cellufine sulfate and the reinforced sulfated cellulose MA achieved the lowest dsDNA product contamination. Finally, by a combination of pseudo-affinity with anion exchange MA a further reduction of host-cell DNA was achieved.


Asunto(s)
Cromatografía/métodos , Vacuna contra Viruela/aislamiento & purificación , Virus Vaccinia/aislamiento & purificación , Adsorción , Animales , Embrión de Pollo , Cromatografía de Afinidad/métodos , Cromatografía por Intercambio Iónico/métodos , Fibroblastos/virología , Humanos , Vacunas Atenuadas/aislamiento & purificación , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA