Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 55(5): 648-664.e9, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33171098

RESUMEN

Enhancers are essential drivers of cell states, yet the relationship between accessibility, regulatory activity, and in vivo lineage commitment during embryogenesis remains poorly understood. Here, we measure chromatin accessibility in isolated neural and mesodermal lineages across a time course of Drosophila embryogenesis. Promoters, including tissue-specific genes, are often constitutively open, even in contexts where the gene is not expressed. In contrast, the majority of distal elements have dynamic, tissue-specific accessibility. Enhancer priming appears rarely within a lineage, perhaps reflecting the speed of Drosophila embryogenesis. However, many tissue-specific enhancers are accessible in other lineages early on and become progressively closed as embryogenesis proceeds. We demonstrate the usefulness of this tissue- and time-resolved resource to definitively identify single-cell clusters, to uncover predictive motifs, and to identify many regulators of tissue development. For one such predicted neural regulator, l(3)neo38, we generate a loss-of-function mutant and uncover an essential role for neuromuscular junction and brain development.


Asunto(s)
Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Desarrollo Embrionario/genética , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Animales , Linaje de la Célula/genética , Cromatina , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Mesodermo/embriología , Músculos/embriología , Neuronas/citología , Especificidad de Órganos/genética , Unión Proteica , Análisis de la Célula Individual , Factores de Tiempo , Factores de Transcripción/metabolismo
2.
Mol Syst Biol ; 16(8): e9539, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32767663

RESUMEN

For most biological processes, organisms must respond to extrinsic cues, while maintaining essential gene expression programmes. Although studied extensively in single cells, it is still unclear how variation is controlled in multicellular organisms. Here, we used a machine-learning approach to identify genomic features that are predictive of genes with high versus low variation in their expression across individuals, using bulk data to remove stochastic cell-to-cell variation. Using embryonic gene expression across 75 Drosophila isogenic lines, we identify features predictive of expression variation (controlling for expression level), many of which are promoter-related. Genes with low variation fall into two classes reflecting different mechanisms to maintain robust expression, while genes with high variation seem to lack both types of stabilizing mechanisms. Applying this framework to humans revealed similar predictive features, indicating that promoter architecture is an ancient mechanism to control expression variation. Remarkably, expression variation features could also partially predict differential expression after diverse perturbations in both Drosophila and humans. Differential gene expression signatures may therefore be partially explained by genetically encoded gene-specific features, unrelated to the studied treatment.


Asunto(s)
Biología Computacional/métodos , Drosophila/genética , Perfilación de la Expresión Génica/métodos , Regiones Promotoras Genéticas , Animales , Comunicación Celular , Proteínas de Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Aprendizaje Automático , Especificidad de la Especie
3.
BMC Genomics ; 20(1): 710, 2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31510914

RESUMEN

BACKGROUND: Chlamydia are ancient intracellular pathogens with reduced, though strikingly conserved genome. Despite their parasitic lifestyle and isolated intracellular environment, these bacteria managed to avoid accumulation of deleterious mutations leading to subsequent genome degradation characteristic for many parasitic bacteria. RESULTS: We report pan-genomic analysis of sixteen species from genus Chlamydia including identification and functional annotation of orthologous genes, and characterization of gene gains, losses, and rearrangements. We demonstrate the overall genome stability of these bacteria as indicated by a large fraction of common genes with conserved genomic locations. On the other hand, extreme evolvability is confined to several paralogous gene families such as polymorphic membrane proteins and phospholipase D, and likely is caused by the pressure from the host immune system. CONCLUSIONS: This combination of a large, conserved core genome and a small, evolvable periphery likely reflect the balance between the selective pressure towards genome reduction and the need to adapt to escape from the host immunity.


Asunto(s)
Adaptación Fisiológica/genética , Chlamydia/genética , Chlamydia/fisiología , Genómica , Interacciones Huésped-Patógeno/genética , Selección Genética , Evolución Molecular , Genoma Bacteriano/genética , Anotación de Secuencia Molecular
4.
Front Microbiol ; 8: 195, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28265262

RESUMEN

The genome of Caldithrix abyssi, the first cultivated representative of a phylum-level bacterial lineage, was sequenced within the framework of Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. The genomic analysis revealed mechanisms allowing this anaerobic bacterium to ferment peptides or to implement nitrate reduction with acetate or molecular hydrogen as electron donors. The genome encoded five different [NiFe]- and [FeFe]-hydrogenases, one of which, group 1 [NiFe]-hydrogenase, is presumably involved in lithoheterotrophic growth, three other produce H2 during fermentation, and one is apparently bidirectional. The ability to reduce nitrate is determined by a nitrate reductase of the Nap family, while nitrite reduction to ammonia is presumably catalyzed by an octaheme cytochrome c nitrite reductase εHao. The genome contained genes of respiratory polysulfide/thiosulfate reductase, however, elemental sulfur and thiosulfate were not used as the electron acceptors for anaerobic respiration with acetate or H2, probably due to the lack of the gene of the maturation protein. Nevertheless, elemental sulfur and thiosulfate stimulated growth on fermentable substrates (peptides), being reduced to sulfide, most probably through the action of the cytoplasmic sulfide dehydrogenase and/or NAD(P)-dependent [NiFe]-hydrogenase (sulfhydrogenase) encoded by the genome. Surprisingly, the genome of this anaerobic microorganism encoded all genes for cytochrome c oxidase, however, its maturation machinery seems to be non-operational due to genomic rearrangements of supplementary genes. Despite the fact that sugars were not among the substrates reported when C. abyssi was first described, our genomic analysis revealed multiple genes of glycoside hydrolases, and some of them were predicted to be secreted. This finding aided in bringing out four carbohydrates that supported the growth of C. abyssi: starch, cellobiose, glucomannan and xyloglucan. The genomic analysis demonstrated the ability of C. abyssi to synthesize nucleotides and most amino acids and vitamins. Finally, the genomic sequence allowed us to perform a phylogenomic analysis, based on 38 protein sequences, which confirmed the deep branching of this lineage and justified the proposal of a novel phylum Calditrichaeota.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...