Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(4): e202317462, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38010620

RESUMEN

The selective formation of homonuclear bonds is of key importance in synthetic chemistry. Especially, dehydrocoupling reactions are attractive as ecologically and economically friendly alternatives to established reductive bond forming reactions, since they do not require the use of stoichiometric amounts of a reducing reagent and produce only valuable dihydrogen as by-product. Here, we report on a metal-free B-B dehydrocoupling reaction that starts directly from a simple, easily accessible BH3 adduct, providing convenient access to a new nucleophilic dihydridodiborane in excellent yield. The dihydridodiborane in turn activates dihydrogen, allowing to obtain quantitatively the dideuteridodiborane from the dihydridodiborane by D2 activation. On the basis of detailed quantum-chemical calculations, the mechanism of this unprecedented reaction is elucidated. Some key points that are essential for metal-free dehydrocoupling are disclosed, paving the way for their systematic evaluation and application.

2.
Angew Chem Int Ed Engl ; 60(28): 15632-15640, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33955154

RESUMEN

The present work describes the reaction of triplet dioxygen with the porphyrinogenic calix[4]pyrrolato aluminates to alkylperoxido aluminates in high selectivity. Multiconfigurational quantum chemical computations disclose the mechanism for this spin-forbidden process. Despite a negligible spin-orbit coupling constant, the intersystem crossing (ISC) is facilitated by singlet and triplet state degeneracy and spin-vibronic coupling. The formed peroxides are stable toward external substrates but undergo an unprecedented oxidative pyrrole α-cleavage by ligand aromatization/dearomatization-initiated O-O σ-bond scission. A detailed comparison of the calix[4]pyrrolato aluminates with dioxygen-related enzymology provides insights into the ISC of metal- or cofactor-free enzymes. It substantiates the importance of structural constraint and element-ligand cooperativity for the functions of aerobic life.


Asunto(s)
Aluminio/metabolismo , Calixarenos/metabolismo , Flavoproteínas/metabolismo , Oxígeno/metabolismo , Fenoles/metabolismo , Pirroles/metabolismo , Aluminio/química , Calixarenos/química , Teoría Funcional de la Densidad , Flavoproteínas/química , Modelos Moleculares , Estructura Molecular , Oxígeno/química , Fenoles/química , Pirroles/química
3.
Angew Chem Int Ed Engl ; 59(39): 17118-17124, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32573936

RESUMEN

Metal-ligand cooperativity (MLC) had a remarkable impact on transition metal chemistry and catalysis. By use of the calix[4]pyrrolato aluminate, [1]- , which features a square-planar AlIII , we transfer this concept into the p-block and fully elucidate its mechanisms by experiment and theory. Complementary to transition metal-based MLC (aromatization upon substrate binding), substrate binding in [1]- occurs by dearomatization of the ligand. The aluminate trapps carbonyls by the formation of C-C and Al-O bonds, but the products maintain full reversibility and outstanding dynamic exchange rates. Remarkably, the C-C bonds can be formed or cleaved by the addition or removal of lithium cations, permitting unprecedented control over the system's constitutional state. Moreover, the metal-ligand cooperative substrate interaction allows to twist the kinetics of catalytic hydroboration reactions in a unique sense. Ultimately, this work describes the evolution of an anti-van't Hoff/Le Bel species from their being as a structural curiosity to their application as a reagent and catalyst.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA