Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Sci Rep ; 14(1): 7411, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548913

RESUMEN

Neurons are highly dependent on mitochondria to meet their bioenergetic needs and understanding the metabolic changes during the differentiation process is crucial in the neurodegeneration context. Several in vitro approaches have been developed to study neuronal differentiation and bioenergetic changes. The human SH-SY5Y cell line is a widely used cellular model and several differentiation protocols have been developed to induce a neuron-like phenotype including retinoic acid (RA) treatment. In this work we obtained a homogeneous functional population of neuron-like cells by a two-step differentiation protocol in which SH-SY5Y cells were treated with RA plus the mitotic inhibitor 2-deoxy-5-fluorouridine (FUdr). RA-FUdr treatment induced a neuronal phenotype characterized by increased expression of neuronal markers and electrical properties specific to excitable cells. In addition, the RA-FUdr differentiated cells showed an enrichment of long chain and unsaturated fatty acids (FA) in the acyl chain composition of cardiolipin (CL) and the bioenergetic analysis evidences a high coupled and maximal respiration associated with high mitochondrial ATP levels. Our results suggest that the observed high oxidative phosphorylation (OXPHOS) capacity may be related to the activation of the cyclic adenosine monophosphate (cAMP) pathway and the assembly of respiratory supercomplexes (SCs), highlighting the change in mitochondrial phenotype during neuronal differentiation.


Asunto(s)
Neuroblastoma , Tretinoina , Humanos , Tretinoina/farmacología , Tretinoina/metabolismo , Floxuridina , Fosforilación Oxidativa , Línea Celular Tumoral , Neuroblastoma/metabolismo , Diferenciación Celular
2.
Curr Neuropharmacol ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38073105

RESUMEN

BACKGROUND: Meniere's disease (MD) is a cochlear neurodegenerative disease. Hearing loss appears to be triggered by oxidative stress in the ganglion neurons of the inner ear. OBJECTIVE: Here, we confirm the variation of markers of oxidative stress and inflammation in patients with Meniere and hypothesize that chronic treatment with Coriolus mushroom helps in the response to oxidative stress and acts on α-synuclein and on NF-kB-mediated inflammatory processes. METHODS: Markers of oxidative stress and inflammation were evaluated in MD patients with or without Coriolus treatment for 3 or 6 months. RESULTS: MD patients had a small increase in Nrf2, HO-1, γ-GC, Hsp70, Trx and sirtuin-1, which were further increased by Coriolus treatment, especially after 6 months. Increased markers of oxidative damage, such as protein carbonyls, HNE, and ultraweak chemiluminescence, associated with a decrease in plasma GSH/GSSG ratio, were also observed in lymphocytes from MD patients. These parameters were restored to values similar to the baseline in patients treated with Coriolus for both 3 and 6 months. Furthermore, treated MD subjects showed decreased expression of α-synuclein, GFAP and Iba-1 proteins and modulation of the NF-kB pathway, which were impaired in MD patients. These changes were greatest in subjects taking the supplements for 6 months. CONCLUSIONS: Our study suggests MD as a model of cochlear neurodegenerative disease for the identification of potent inducers of the Nrf2-vitagene pathway, able to reduce the deleterious consequences associated with neurodegenerative damage, probably by indirectly acting on α-synuclein expression and on inflammatory processes NF- kB-mediated.

3.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37445598

RESUMEN

Mitochondria play a key role in cancer and their involvement is not limited to the production of ATP only. Mitochondria also produce reactive oxygen species and building blocks to sustain rapid cell proliferation; thus, the deregulation of mitochondrial function is associated with cancer disease development and progression. In cancer cells, a metabolic reprogramming takes place through a different modulation of the mitochondrial metabolic pathways, including oxidative phosphorylation, fatty acid oxidation, the Krebs cycle, glutamine and heme metabolism. Alterations of mitochondrial homeostasis, in particular, of mitochondrial biogenesis, mitophagy, dynamics, redox balance, and protein homeostasis, were also observed in cancer cells. The use of drugs acting on mitochondrial destabilization may represent a promising therapeutic approach in tumors in which mitochondrial respiration is the predominant energy source. In this review, we summarize the main mitochondrial features and metabolic pathways altered in cancer cells, moreover, we present the best known drugs that, by acting on mitochondrial homeostasis and metabolic pathways, may induce mitochondrial alterations and cancer cell death. In addition, new strategies that induce mitochondrial damage, such as photodynamic, photothermal and chemodynamic therapies, and the development of nanoformulations that specifically target drugs in mitochondria are also described. Thus, mitochondria-targeted drugs may open new frontiers to a tailored and personalized cancer therapy.


Asunto(s)
Mitocondrias , Neoplasias , Humanos , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Fosforilación Oxidativa , Ciclo del Ácido Cítrico , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
4.
Antioxidants (Basel) ; 12(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36829783

RESUMEN

In mammals during aging, reactive oxygen species (ROS), produced by the mitochondrial respiratory chain, cause oxidative damage of macromolecules leading to respiratory chain dysfunction, which in turn increases ROS mitochondrial production. Many efforts have been made to understand the role of oxidative stress in aging and age-related diseases. The complex I of the mitochondrial respiratory chain is the major source of ROS production and its dysfunctions have been associated with several forms of neurodegeneration, other common human diseases and aging. Complex I-ROS production and complex I content have been proposed as the major determinants for longevity. The cAMP signal has a role in the regulation of complex I activity and the decrease of ROS production. In the last years, an increasing number of studies have attempted to activate cAMP signaling to treat age-related diseases associated with mitochondrial dysfunctions and ROS production. This idea comes from a long-line of studies showing a main role of cAMP signal in the memory consolidation mechanism and in the regulation of mitochondrial functions. Here, we discuss several evidences on the possible connection between complex I and cAMP pathway in the aging process.

5.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36674740

RESUMEN

Ovarian cancer (OC) represents the main cause of death from gynecological malignancies in western countries. Altered cellular and mitochondrial metabolism are considered hallmarks in cancer disease. Several mitochondrial aspects have been found altered in OC, such as the oxidative phosphorylation system, oxidative stress and mitochondrial dynamics. Mitochondrial dynamics includes cristae remodeling, fusion, and fission processes forming a dynamic mitochondrial network. Alteration of mitochondrial dynamics is associated with metabolic change in tumour development and, in particular, the mitochondrial shaping proteins appear also to be responsible for the chemosensitivity and/or chemoresistance in OC. In this review a focus on the mitochondrial dynamics in OC cells is presented.


Asunto(s)
Dinámicas Mitocondriales , Neoplasias Ováricas , Humanos , Femenino , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Neoplasias Ováricas/metabolismo , Proteínas Mitocondriales/metabolismo , Dinaminas/metabolismo
6.
Sci Rep ; 12(1): 19847, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36400945

RESUMEN

Barth Syndrome (BTHS), a genetic disease associated with early-onset cardioskeletal myopathy, is caused by loss-of-function mutations of the TAFAZZIN gene, which is responsible for remodeling the mitochondrial phospholipid cardiolipin (CL). Deregulation of CL biosynthesis and maturation in BTHS mitochondria result in a dramatically increased monolysocardiolipin (MLCL)/CL ratio associated with bioenergetic dysfunction. One of the most promising therapeutic approaches for BTHS includes the mitochondria-targeted tetrapeptide SS-31, which interacts with CL. Here, we used TAFAZZIN knockdown (TazKD) mice to investigate for the first time whether in vivo administration of SS-31 could affect phospholipid profiles and mitochondrial dysfunction. The CL fingerprinting of TazKD cardiac mitochondria obtained by MALDI-TOF/MS revealed the typical lipid changes associated with BTHS. TazKD mitochondria showed lower respiratory rates in state 3 and 4 together with a decreased in maximal respiratory rates. Treatment of TazKD mice with SS-31 improved mitochondrial respiratory capacity and promoted supercomplex organization, without affecting the MLCL/CL ratio. We hypothesize that SS-31 exerts its effect by influencing the function of the respiratory chain rather than affecting CL directly. In conclusion, our results indicate that SS-31 have beneficial effects on improving cardiac mitochondrial dysfunction in a BTHS animal model, suggesting the peptide as future pharmacologic agent for therapy.


Asunto(s)
Aciltransferasas , Síndrome de Barth , Ratones , Animales , Aciltransferasas/genética , Factores de Transcripción/genética , Síndrome de Barth/genética , Cardiolipinas , Mitocondrias Cardíacas , Fosfolípidos
7.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36077053

RESUMEN

The oxidative phosphorylation (OXPHOS) system couples the transfer of electrons to oxygen with pumping of protons across the inner mitochondrial membrane, ensuring the ATP production. Evidence suggests that respiratory chain complexes may also assemble into supramolecular structures, called supercomplexes (SCs). The SCs appear to increase the efficiency/capacity of OXPHOS and reduce the reactive oxygen species (ROS) production, especially that which is produced by complex I. Studies suggest a mutual regulation between complex I and SCs, while SCs organization is important for complex I assembly/stability, complex I is involved in the supercomplex formation. Complex I is a pacemaker of the OXPHOS system, and it has been shown that the PKA-dependent phosphorylation of some of its subunits increases the activity of the complex, reducing the ROS production. In this work, using in ex vivo and in vitro models, we show that the activation of cAMP/PKA cascade resulted in an increase in SCs formation associated with an enhanced capacity of electron flux and ATP production rate. This is also associated with the phosphorylation of the NDUFS4 subunit of complex I. This aspect highlights the key role of complex I in cellular energy production.


Asunto(s)
Membranas Mitocondriales , Fosforilación Oxidativa , Adenosina Trifosfato/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Membranas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
Biomolecules ; 11(10)2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34680144

RESUMEN

Parkin plays an important role in ensuring efficient mitochondrial function and calcium homeostasis. Parkin-mutant human fibroblasts, with defective oxidative phosphorylation activity, showed high basal cAMP level likely ascribed to increased activity/expression of soluble adenylyl cyclase and/or low expression/activity of the phosphodiesterase isoform 4 and to a higher Ca2+ level. Overall, these findings support the existence, in parkin-mutant fibroblasts, of an abnormal Ca2+ and cAMP homeostasis in mitochondria. In our previous studies resveratrol treatment of parkin-mutant fibroblasts induced a partial rescue of mitochondrial functions associated with stimulation of the AMPK/SIRT1/PGC-1α pathway. In this study we provide additional evidence of the potential beneficial effects of resveratrol inducing an increase in the pre-existing high Ca2+ level and remodulation of the cAMP homeostasis in parkin-mutant fibroblasts. Consistently, we report in these fibroblasts higher expression of proteins implicated in the tethering of ER and mitochondrial contact sites along with their renormalization after resveratrol treatment. On this basis we hypothesize that resveratrol-mediated enhancement of the Ca2+ level, fine-tuned by the ER-mitochondria Ca2+ crosstalk, might modulate the pAMPK/AMPK pathway in parkin-mutant fibroblasts.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Calcio/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Resveratrol/farmacología , Ubiquitina-Proteína Ligasas/genética , Señalización del Calcio/efectos de los fármacos , AMP Cíclico/genética , Retículo Endoplásmico/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Mitofagia/genética , Proteínas Mutantes/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Sirtuina 1/genética
9.
Cancers (Basel) ; 13(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34439397

RESUMEN

Platelets represent the linkage between tissue damage and inflammatory response with a putative role in tumorigenesis. Given the importance of the microenvironment in colon cancer development, we elucidated the eventual role of platelets-cancer cells crosstalk in in vivo colon cancermodels. To evaluate the involvement of platelets in intestinal tumorigenesis, we first analyzed if the ablation of ß-integrin P-selectin that drives platelets-cell adhesion, would contribute to platelets-colon cancer cell interaction and drive cancer progression. In a xenograft tumor model, we observed that when tumors are inoculated with platelets, the ablation of P-selectin significantly reduced tumor growth compared to control platelets. Furthermore, in genetic models, as well as in chronic colitis-associated colorectal carcinogenesis, P-selectin ablated mice displayed a significant reduction in tumor number and size compared to control mice. Taken together, our data highlights the importance of platelets in the tumor microenvironment for intestinal tumorigenesis. These results support the hypothesis that a strategy aimed to inhibit platelets adhesion to tumor cells are able to block tumor growth and could represent a novel therapeutic approach to colon cancer treatment.

10.
Antioxidants (Basel) ; 10(4)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805396

RESUMEN

Moringa oleifera (MO) is a medicinal plant that has been shown to possess antioxidant, anticarcinogenic and antibiotic activities. In a rat model, MO extract (MOe) has been shown to have a protective effect against brain damage and memory decline. As an extending study, here, we have examined the protective effect of MOe against oxidative stress and apoptosis caused in human neuroblastome (SH-SY5Y) cells by di-(2-ethylhexyl) phthalate (DEHP), a plasticizer known to induce neurotoxicity. Our data show that MOe prevents oxidative damage by lowering reactive oxygen species (ROS) formation, restoring mitochondrial respiratory chain complex activities, and, in addition, by modulating the expression of vitagenes, i.e., antioxidant proteins Nrf2 and HO-1. Moreover, MOe prevented neuronal damage by partly inhibiting endoplasmic reticulum (ER) stress response, as indicated by decreased expression of CCAAT-enhancer-binding protein homologous protein (CHOP) and Glucose-regulated protein 78 (GRP78) proteins. MOe also protected SH-SY5Y cells from DEHP-induced apoptosis, preserving mitochondrial membrane permeability and caspase-3 activation. Our findings provide insight into understanding of molecular mechanisms involved in neuroprotective effects by MOe against DEHP damage.

11.
Clin Case Rep ; 9(3): 1066-1071, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33768784

RESUMEN

Abnormal NIPT results, contrasting with normal fetus development, could disclose maternal malignancy, and this possibility should always be explained during pretest counseling. In this case, a complete diagnostic assessment is recommended and should be managed by a multidisciplinary team to define the best timing for diagnostic procedures, delivery, and treatment.

12.
Antioxidants (Basel) ; 10(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379309

RESUMEN

Multiple sclerosis (MS) is a complex inflammatory and neurodegenerative chronic disease that involves the immune and central nervous systems (CNS). The pathogenesis involves the loss of blood-brain barrier integrity, resulting in the invasion of lymphocytes into the CNS with consequent tissue damage. The MS etiology is probably a combination of immunological, genetic, and environmental factors. It has been proposed that T lymphocytes have a main role in the onset and propagation of MS, leading to the inflammation of white matter and myelin sheath destruction. Cyclic AMP (cAMP), mitochondrial dysfunction, and oxidative stress exert a role in the alteration of T lymphocytes homeostasis and are involved in the apoptosis resistance of immune cells with the consequent development of autoimmune diseases. The defective apoptosis of autoreactive lymphocytes in patients with MS, allows these cells to perpetuate, within the CNS, a continuous cycle of inflammation. In this review, we discuss the involvement in MS of cAMP pathway, mitochondria, reactive oxygen species (ROS), apoptosis, and their interaction in the alteration of T lymphocytes homeostasis. In addition, we discuss a series of nutraceutical compounds that could influence these aspects.

13.
Biomedicines ; 8(4)2020 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-32290388

RESUMEN

Multiple sclerosis (MS) is an autoimmune disease in which activated lymphocytes affect the central nervous system. Increase of reactive oxygen species (ROS), impairment of mitochondria-mediated apoptosis and mitochondrial alterations have been reported in peripheral lymphocytes of MS patients. Mitochondria-mediated apoptosis is regulated by several mechanisms and proteins. Among others, optic atrophy 1 (OPA1) protein plays a key role in the regulating mitochondrial dynamics, cristae architecture and release of pro-apoptotic factors. Very interesting, mutations in OPA1 gene, have been associated with multiple sclerosis-like disorder. We have analyzed OPA1 and some factors involved in its regulation. Fifteen patients with MS and fifteen healthy control subjects (HC) were enrolled into the study and peripheral blood mononuclear cells (PBMCs) were isolated. H2O2 level was measured spectrofluorimetrically, OPA1, PHB2, SIRT3, and OMA1 were analyzed by western blotting. Statistical analysis was performed using Student's t-test. The results showed that PBMC of MS patients were characterized by a deregulation of OPA1 processing associated with increased H2O2 production, inactivation of OMA1 and increase of PHB2 protein level. The presented data suggest that the alteration of PHB2, OMA1, and OPA1 processing could be involved in resistance towards apoptosis. These molecular parameters could also be useful to assess disease activity.

14.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32244920

RESUMEN

Hericium Erinaceus (HE) is a medicinal plant known to possess anticarcinogenic, antibiotic, and antioxidant activities. It has been shown to have a protective effect against ischemia-injury-induced neuronal cell death in rats. As an extending study, here we examined in pheochromocytoma 12 (PC12) cells, whether HE could exert a protective effect against oxidative stress and apoptosis induced by di(2-ethylhexyl)phthalate (DEHP), a plasticizer known to cause neurotoxicity. We demonstrated that pretreatment with HE significantly attenuated DEHP induced cell death. This protective effect may be attributed to its ability to reduce intracellular reactive oxygen species levels, preserving the activity of respiratory complexes and stabilizing the mitochondrial membrane potential. Additionally, HE pretreatment significantly modulated Nrf2 and Nrf2-dependent vitagenes expression, preventing the increase of pro-apoptotic and the decrease of anti-apoptotic markers. Collectively, our data provide evidence of new preventive nutritional strategy using HE against DEHP-induced apoptosis in PC12 cells.


Asunto(s)
Apoptosis , Dietilhexil Ftalato/toxicidad , Hericium/química , Mitocondrias/patología , Extractos Vegetales/farmacología , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Hemo-Oxigenasa 1/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Células PC12 , Ratas , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/metabolismo , Tiorredoxinas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/metabolismo
15.
Cancers (Basel) ; 11(9)2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31547300

RESUMEN

Ovarian cancer (OC) is the most lethal gynecologic cancer characterized by an elevated apoptosis resistance that, potentially, leads to chemo-resistance in the recurrent disease. Mitochondrial oxidative phosphorylation was found altered in OC, and mitochondria were proposed as a target for therapy. Molecular evidence suggests that the deregulation of mitochondrial biogenesis, morphology, dynamics, and apoptosis is involved in carcinogenesis. However, these mitochondrial processes remain to be investigated in OC. Eighteen controls and 16 OC tissues (serous and mucinous) were collected. Enzymatic activities were performed spectrophotometrically, mitochondrial DNA (mtDNA) content was measured by real-time-PCR, protein levels were determined by Western blotting, and mitochondrial number and structure were measured by electron microscopy. Statistical analysis was performed using Student's t-test, Mann-Whitney U test, and principal component analysis (PCA). We found, in OC, that increased mitochondrial number associated with increased peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) and mitochondrial transcription factor A (TFAM) protein levels, as well as mtDNA content. The OC mitochondria presented an increased maximum length, as well as reduced cristae width and junction diameter, associated with increased optic atrophy 1 protein (OPA1) and prohibitin 2 (PHB2) protein levels. In addition, in OC tissues, augmented cAMP and sirtuin 3 (SIRT3) protein levels were observed. PCA of the 25 analyzed biochemical parameters classified OC patients in a distinct group from controls. We highlight a "mitochondrial signature" in OC that could result from cooperation of the cAMP pathway with the SIRT3, OPA1, and PHB2 proteins.

16.
Cells ; 8(3)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30875974

RESUMEN

Almost half of autosomal recessive early-onset parkinsonism has been associated with mutations in PARK2, coding for parkin, which plays an important role in mitochondria function and calcium homeostasis. Cyclic adenosine monophosphate (cAMP) is a major second messenger regulating mitochondrial metabolism, and it is strictly interlocked with calcium homeostasis. Parkin-mutant (Pt) fibroblasts, exhibiting defective mitochondrial respiratory/OxPhos activity, showed a significant higher value of basal intracellular level of cAMP, as compared with normal fibroblasts (CTRL). Specific pharmacological inhibition/activation of members of the adenylyl cyclase- and of the phosphodiesterase-families, respectively, as well as quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis, indicate that the higher level of cAMP observed in Pt fibroblasts can contribute to a higher level of activity/expression by soluble adenylyl cyclase (sAC) and to low activity/expression of the phosphodiesterase isoform 4 (PDE4). As Ca2+ regulates sAC, we performed quantitative calcium-fluorimetric analysis, showing a higher level of Ca2+ in the both cytosol and mitochondria of Pt fibroblasts as compared with CTRL. Most notably, inhibition of the mitochondrial Ca2+ uniporter decreased, specifically the cAMP level in PD fibroblasts. All together, these findings support the occurrence of an altered mitochondrial Ca2+-mediated cAMP homeostasis in fibroblasts with the parkin mutation.


Asunto(s)
Adenilil Ciclasas/genética , Calcio/farmacología , AMP Cíclico/metabolismo , Fibroblastos/metabolismo , Mutación/genética , Ubiquitina-Proteína Ligasas/genética , Adenilil Ciclasas/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Dantroleno/farmacología , Retículo Endoplásmico/metabolismo , Activación Enzimática/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Fosforilación/efectos de los fármacos , Solubilidad , Transcripción Genética/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo
17.
Cells ; 8(1)2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30669391

RESUMEN

Prohibitin 1 (PHB1) and prohibitin 2 (PHB2) are proteins that are ubiquitously expressed, and are present in the nucleus, cytosol, and mitochondria. Depending on the cellular localization, PHB1 and PHB2 have distinctive functions, but more evidence suggests a critical role within mitochondria. In fact, PHB proteins are highly expressed in cells that heavily depend on mitochondrial function. In mitochondria, these two proteins assemble at the inner membrane to form a supra-macromolecular structure, which works as a scaffold for proteins and lipids regulating mitochondrial metabolism, including bioenergetics, biogenesis, and dynamics in order to determine the cell fate, death, or life. PHB alterations have been found in aging and cancer, as well as neurodegenerative, cardiac, and kidney diseases, in which significant mitochondrial impairments have been observed. The molecular mechanisms by which prohibitins regulate mitochondrial function and their role in pathology are reviewed and discussed herein.


Asunto(s)
Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Represoras/metabolismo , Animales , Humanos , Mitocondrias/ultraestructura , Biogénesis de Organelos , Fosforilación Oxidativa , Prohibitinas , Respuesta de Proteína Desplegada
18.
Int J Mol Sci ; 21(1)2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31888107

RESUMEN

Nephropathic cystinosis is a rare lysosomal storage disorder caused by mutations in CTNS gene leading to Fanconi syndrome. Independent studies reported defective clearance of damaged mitochondria and mitochondrial fragmentation in cystinosis. Proteins involved in the mitochondrial dynamics and the mitochondrial ultrastructure were analyzed in CTNS-/- cells treated with cysteamine, the only drug currently used in the therapy for cystinosis but ineffective to treat Fanconi syndrome. CTNS-/- cells showed an overexpression of parkin associated with deregulation of ubiquitination of mitofusin 2 and fission 1 proteins, an altered proteolytic processing of optic atrophy 1 (OPA1), and a decreased OPA1 oligomerization. According to molecular findings, the analysis of electron microscopy images showed a decrease of mitochondrial cristae number and an increase of cristae lumen and cristae junction width. Cysteamine treatment restored the fission 1 ubiquitination, the mitochondrial size, number and lumen of cristae, but had no effect on cristae junction width, making CTNS-/- tubular cells more susceptible to apoptotic stimuli.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/genética , Cisteamina/farmacología , Cistinosis/genética , Mitocondrias/metabolismo , Células Cultivadas , Cistinosis/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , GTP Fosfohidrolasas/metabolismo , Humanos , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Dinámicas Mitocondriales/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
19.
Cell Mol Life Sci ; 75(18): 3411-3422, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29549422

RESUMEN

Nephropathic cystinosis (NC) is a rare disease caused by mutations in the CTNS gene encoding for cystinosin, a lysosomal transmembrane cystine/H+ symporter, which promotes the efflux of cystine from lysosomes to cytosol. NC is the most frequent cause of Fanconi syndrome (FS) in young children, the molecular basis of which is not well established. Proximal tubular cells have very high metabolic rate due to the active transport of many solutes. Not surprisingly, mitochondrial disorders are often characterized by FS. A similar mechanism may also apply to NC. Because cAMP has regulatory properties on mitochondrial function, we have analyzed cAMP levels and mitochondrial targets in CTNS-/- conditionally immortalized proximal tubular epithelial cells (ciPTEC) carrying the classical homozygous 57-kb deletion (delCTNS-/-) or with compound heterozygous loss-of-function mutations (mutCTNS-/-). Compared to wild-type cells, cystinotic cells had significantly lower mitochondrial cAMP levels (delCTNS-/- ciPTEC by 56% ± 10.5, P < 0.0001; mutCTNS-/- by 26% ± 4.3, P < 0.001), complex I and V activities, mitochondrial membrane potential, and SIRT3 protein levels, which were associated with increased mitochondrial fragmentation. Reduction of complex I and V activities was associated with lower expression of part of their subunits. Treatment with the non-hydrolysable cAMP analog 8-Br-cAMP restored mitochondrial potential and corrected mitochondria morphology. Treatment with cysteamine, which reduces the intra-lysosomal cystine, was able to restore mitochondrial cAMP levels, as well as most other abnormal mitochondrial findings. These observations were validated in CTNS-silenced HK-2 cells, indicating a pivotal role of mitochondrial cAMP in the proximal tubular dysfunction observed in NC.


Asunto(s)
AMP Cíclico/metabolismo , Cistinosis/patología , Mitocondrias/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inhibidores , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Línea Celular , Cistinosis/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Túbulos Renales Proximales/citología , Potencial de la Membrana Mitocondrial , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Sirtuina 3/metabolismo
20.
Cell Death Dis ; 9(2): 231, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445193

RESUMEN

While aberrant cancer cell growth is frequently associated with altered biochemical metabolism, normal mitochondrial functions are usually preserved and necessary for full malignant transformation. The transcription factor FoxO3A is a key determinant of cancer cell homeostasis, playing a dual role in survival/death response to metabolic stress and cancer therapeutics. We recently described a novel mitochondrial arm of the AMPK-FoxO3A axis in normal cells upon nutrient shortage. Here, we show that in metabolically stressed cancer cells, FoxO3A is recruited to the mitochondria through activation of MEK/ERK and AMPK, which phosphorylate serine 12 and 30, respectively, on FoxO3A N-terminal domain. Subsequently, FoxO3A is imported and cleaved to reach mitochondrial DNA, where it activates expression of the mitochondrial genome to support mitochondrial metabolism. Using FoxO3A-/- cancer cells generated with the CRISPR/Cas9 genome editing system and reconstituted with FoxO3A mutants being impaired in their nuclear or mitochondrial subcellular localization, we show that mitochondrial FoxO3A promotes survival in response to metabolic stress. In cancer cells treated with chemotherapeutic agents, accumulation of FoxO3A into the mitochondria promoted survival in a MEK/ERK-dependent manner, while mitochondrial FoxO3A was required for apoptosis induction by metformin. Elucidation of FoxO3A mitochondrial vs. nuclear functions in cancer cell homeostasis might help devise novel therapeutic strategies to selectively disable FoxO3A prosurvival activity.


Asunto(s)
Antineoplásicos/farmacología , Núcleo Celular/metabolismo , Proteína Forkhead Box O3/genética , Regulación Neoplásica de la Expresión Génica , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Sistemas CRISPR-Cas , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Supervivencia Celular , Cisplatino/farmacología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fluorouracilo/farmacología , Proteína Forkhead Box O3/metabolismo , Edición Génica , Genoma Mitocondrial , Células HEK293 , Humanos , Irinotecán/farmacología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Células 3T3 NIH , Fosforilación , Transducción de Señal , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...