Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743035

RESUMEN

Isoquinolinequinones represent an important family of natural alkaloids with profound biological activities. Heterologous expression of a rare bifunctional indole prenyltransferase/tryptophan indole-lyase enzyme from Streptomyces mirabilis P8-A2 in S. albidoflavus J1074 led to the activation of a putative isoquinolinequinone biosynthetic gene cluster and production of a novel isoquinolinequinone alkaloid, named maramycin (1). The structure of maramycin was determined by analysis of spectroscopic (1D/2D NMR) and MS spectrometric data. The prevalence of this bifunctional biosynthetic enzyme was explored and found to be a recent evolutionary event with only a few representatives in nature. Maramycin exhibited moderate cytotoxicity against human prostate cancer cell lines, LNCaP and C4-2B. The discovery of maramycin (1) enriched the chemical diversity of natural isoquinolinequinones and also provided new insights into crosstalk between the host biosynthetic genes and the heterologous biosynthetic genes in generating new chemical scaffolds.

2.
Front Microbiol ; 13: 786008, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401454

RESUMEN

Streptomyces sp. BRA-346 is an Actinobacteria isolated from the Brazilian endemic tunicate Euherdmania sp. We have reported that this strain produces epoxyketone peptides, as dihydroeponemycin (DHE) and structurally related analogs. This cocktail of epoxyketone peptides inhibits the proteasome chymotrypsin-like activity and shows high cytotoxicity to glioma cells. However, low yields and poor reproducibility of epoxyketone peptides production by BRA-346 under laboratory cultivation have limited the isolation of epoxyketone peptides for additional studies. Here, we evaluated several cultivation methods using different culture media and chemical elicitors to increase the repertoire of peptide epoxyketone production by this bacterium. Furthermore, BRA-346 genome was sequenced, revealing its broad genetic potential, which is mostly hidden under laboratory conditions. By using specific growth conditions, we were able to evidence different classes of secondary metabolites produced by BRA-346. In addition, by combining genome mining with untargeted metabolomics, we could link the metabolites produced by BRA-346 to its genetic capacity and potential regulators. A single biosynthetic gene cluster (BGC) was related to the production of the target epoxyketone peptides by BRA-346. The candidate BGC displays conserved biosynthetic enzymes with the reported eponemycin (EPN) and TMC-86A (TMC) BGCs. The core of the putative epoxyketone peptide BGC (ORFs A-L), in which ORF A is a LuxR-like transcription factor, was cloned into a heterologous host. The recombinant organism was capable to produce TMC and EPN natural products, along with the biosynthetic intermediates DH-TMC and DHE, and additional congeners. A phylogenetic analysis of the epn/tmc BGC revealed related BGCs in public databases. Most of them carry a proteasome beta-subunit, however, lacking an assigned specialized metabolite. The retrieved BGCs also display a diversity of regulatory genes and TTA codons, indicating tight regulation of this BGC at the transcription and translational levels. These results demonstrate the plasticity of the epn/tmc BGC of BRA-346 in producing epoxyketone peptides and the feasibility of their production in a heterologous host. This work also highlights the capacity of BRA-346 to tightly regulate its secondary metabolism and shed light on how to awake silent gene clusters of Streptomyces sp. BRA-346 to allow the production of pharmacologically important biosynthetic products.

3.
Metabolites ; 11(2)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673148

RESUMEN

Bacterial genome sequencing has revealed a vast number of novel biosynthetic gene clusters (BGC) with potential to produce bioactive natural products. However, the biosynthesis of secondary metabolites by bacteria is often silenced under laboratory conditions, limiting the controlled expression of natural products. Here we describe an integrated methodology for the construction and screening of an elicited and pre-fractionated library of marine bacteria. In this pilot study, chemical elicitors were evaluated to mimic the natural environment and to induce the expression of cryptic BGCs in deep-sea bacteria. By integrating high-resolution untargeted metabolomics with cheminformatics analyses, it was possible to visualize, mine, identify and map the chemical and biological space of the elicited bacterial metabolites. The results show that elicited bacterial metabolites correspond to ~45% of the compounds produced under laboratory conditions. In addition, the elicited chemical space is novel (~70% of the elicited compounds) or concentrated in the chemical space of drugs. Fractionation of the crude extracts further evidenced minor compounds (~90% of the collection) and the detection of biological activity. This pilot work pinpoints strategies for constructing and evaluating chemically diverse bacterial natural product libraries towards the identification of novel bacterial metabolites in natural product-based drug discovery pipelines.

4.
J Vis Exp ; (157)2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32225138

RESUMEN

The chemical space covered by natural products is immense and widely unrecognized. Therefore, convenient methodologies to perform wide-ranging evaluation of their functions in nature and potential human benefits (e.g., for drug discovery applications) are desired. This protocol describes the combination of genome mining (GM) and molecular networking (MN), two contemporary approaches that match gene cluster-encoded annotations in whole genome sequencing with chemical structure signatures from crude metabolic extracts. This is the first step towards the discovery of new natural entities. These concepts, when applied together, are defined here as MS-guided genome mining. In this method, the main components are previously designated (using MN), and structurally related new candidates are associated with genome sequence annotations (using GM). Combining GM and MN is a profitable strategy to target new molecule backbones or harvest metabolic profiles in order to identify analogues from already known compounds.


Asunto(s)
Productos Biológicos/química , Descubrimiento de Drogas/métodos , Genómica/métodos , Espectrometría de Masas/métodos , Humanos
5.
ACS Chem Biol ; 15(4): 1067-1077, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32195572

RESUMEN

Alpiniamide A is a linear polyketide produced by Streptomyces endophytic bacteria. Despite its relatively simple chemical structure suggestive of a linear assembly line biosynthetic construction involving a hybrid polyketide synthase-nonribosomal peptide synthetase enzymatic protein machine, we report an unexpected nonlinear synthesis of this bacterial natural product. Using a combination of genomics, heterologous expression, mutagenesis, isotope-labeling, and chain terminator experiments, we propose that alpiniamide A is assembled in two halves and then ligated into the mature molecule. We show that each polyketide half is constructed using orthogonal biosynthetic strategies, employing either cis- or trans-acyl transferase mechanisms, thus prompting an alternative proposal for the operation of this PKS-NRPS.


Asunto(s)
Proteínas Bacterianas/metabolismo , Péptido Sintasas/metabolismo , Policétidos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Genómica , Familia de Multigenes , Péptido Sintasas/química , Péptido Sintasas/genética , Dominios Proteicos , Streptomyces/genética , Streptomyces/metabolismo
6.
Angew Chem Int Ed Engl ; 58(25): 8394-8399, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-30963655

RESUMEN

l-4-Chlorokynurenine (l-4-Cl-Kyn) is a neuropharmaceutical drug candidate that is in development for the treatment of major depressive disorder. Recently, this amino acid was naturally found as a residue in the lipopeptide antibiotic taromycin. Herein, we report the unprecedented conversion of l-tryptophan into l-4-Cl-Kyn catalyzed by four enzymes in the taromycin biosynthetic pathway from the marine bacterium Saccharomonospora sp. CNQ-490. We used genetic, biochemical, structural, and analytical techniques to establish l-4-Cl-Kyn biosynthesis, which is initiated by the flavin-dependent tryptophan chlorinase Tar14 and its flavin reductase partner Tar15. This work revealed the first tryptophan 2,3-dioxygenase (Tar13) and kynurenine formamidase (Tar16) enzymes that are selective for chlorinated substrates. The substrate scope of Tar13, Tar14, and Tar16 was examined and revealed intriguing promiscuity, thereby opening doors for the targeted engineering of these enzymes as useful biocatalysts.


Asunto(s)
Aminoácidos/metabolismo , Antibacterianos/metabolismo , Antidepresivos/metabolismo , Quinurenina/análogos & derivados , Lipopéptidos/metabolismo , Profármacos/metabolismo , Aminoácidos/química , Antibacterianos/química , Antidepresivos/química , Arilformamidasa/metabolismo , Cristalografía por Rayos X , Quinurenina/biosíntesis , Quinurenina/química , Lipopéptidos/química , Modelos Moleculares , Estructura Molecular , Profármacos/química , Triptófano Oxigenasa/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-30643884

RESUMEN

The whole-genome sequence of Streptomyces sp. strain CBMAI 2042, an endophytic actinobacterium isolated from Citrus sinensis branches, is described. The strain has the ability to inhibit the growth of Xylella fastidiosa and other human pathogens. In silico analysis highlighted the presence of nonribosomal peptide and polyketide synthases, revealing promising antibiotic assembly lines.

8.
Biotechnol Adv ; 33(5): 394-411, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25795056

RESUMEN

Biocatalysis currently is focusing on enzymatic and multi-enzymatic cascade processes instead of single steps imbedded into chemical pathways. Alongside this scientific revolution, this review provides an overview on multi-enzymatic cascades that are responsible for the biosynthesis of some terpenes, alkaloids and polyethers, which are important classes of natural products. Herein, we illustrate the development of studies inspired by multi- and chemo-enzymatic approaches to build the core moieties of polyethers, polypeptide alkaloids, piperidines and pyrrolidines promoted by the joint action of oxidoreductases, hydrolases, cyclases, transaminases and imine reductases.


Asunto(s)
Vías Biosintéticas , Biotecnología , Enzimas , Alcaloides/metabolismo , Biocatálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...