Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Biomed Circuits Syst ; 17(6): 1227-1236, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37708009

RESUMEN

This research article introduces a novel integrated circuit (IC) designed for bioreactor applications catering to multichannel electrochemical sensing. The proposed IC comprises 2x potentiometric, 2x potentiostat, 2x ISFET channels and 1x temperature channel. The potentiostat channel utilizes a current conveyor-based architecture with a programmable mirroring ratio, enabling an extensive measurement range of 114 dB. The potentiometric channel incorporates a customized electrostatic discharge (ESD) protection circuit to achieve ultra-low input leakage in the picoampere range, while the ISFET channel employs a constant-voltage, constant-current topology for accurate pH measurement. Combined with the die temperature sensor, this IC is well-suited for monitoring bioreactions in real-time. Additionally, all channels can be time-multiplexed to a reconfigurable analog backend, facilitating the conversion of input signals into digital codes. The prototype of the IC is fabricated using 0.18 µm standard CMOS technology, and each channel is experimentally characterized. The interface IC demonstrates a peak power consumption of 22 µW.


Asunto(s)
Reactores Biológicos , Electricidad , Diseño de Equipo
2.
IEEE Trans Biomed Circuits Syst ; 15(6): 1224-1235, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34818192

RESUMEN

This paper presents a low power, high dynamic range (DR), light-to-digital converter (LDC) for wearable chest photoplethysmogram (PPG) applications. The proposed LDC utilizes a novel 2nd-order noise-shaping slope architecture, directly converting the photocurrent to a digital code. This LDC applies a high-resolution dual-slope quantizer for data conversion. An auxiliary noise shaping loop is used to shape the residual quantization noise. Moreover, a DC compensation loop is implemented to cancel the PPG signal's DC component, thus further boosting the DR. The prototype is fabricated with 0.18 µm standard CMOS and characterized experimentally. The LDC consumes 28 µW per readout channel while achieving a maximum 134 dB DR. The LDC is also validated with on-body chest PPG measurement.


Asunto(s)
Dispositivos Electrónicos Vestibles , Diseño de Equipo
3.
IEEE Trans Biomed Circuits Syst ; 13(6): 1506-1517, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31581099

RESUMEN

An all-in-one battery powered low-power SoC for measuring multiple vital signs with wearables is proposed. All functionality needed in a typical wearable use case scenario, including dedicated readouts, power management circuitry, digital signal processing and wireless communication (BLE) is integrated in a single die. This high level of integration allows an unprecedented level of miniaturization leading to smaller component count which reduces cost and improves comfort and signal integrity. The SoC includes an ECG, Bio-Impedance and a fully differential PPG readout and can interface with external sensors (like an IMU). In a typical application scenario where all sensor readouts are enabled and key features (like heart rate) are calculated on the chip and streamed over the radio, the SoC consumes only 769 µW from the regulated 1.2 V supply.


Asunto(s)
Electrocardiografía/instrumentación , Corazón/fisiología , Algoritmos , Impedancia Eléctrica , Diseño de Equipo , Frecuencia Cardíaca , Humanos , Miniaturización , Procesamiento de Señales Asistido por Computador , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica
4.
IEEE Trans Biomed Circuits Syst ; 13(6): 1625-1634, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31545741

RESUMEN

Large-scale in vivo electrophysiology requires tools that enable simultaneous recording of multiple brain regions at single-neuron level. This calls for the design of more compact neural probes that offer even larger arrays of addressable sites and high channel counts. With this aim, we present in this paper a quad-shank approach to integrate as many as 5,120 sites on a single probe. Compact fully-differential recording channels were designed using a single-gain-stage neural amplifier with a 14-bit ADC, achieving a mean input-referred noise of 7.44 µVrms in the action-potential band and 7.65 µVrms in the local-field-potential band, a mean total harmonic distortion of 0.17% at 1 kHz and a mean input-referred offset of 169 µV. The probe base incorporates 384 channels with on-chip power management, reference-voltage generation and digital control, thus achieving the highest level of integration in a neural probe and excellent channel-to-channel uniformity. Therefore, no calibration or external circuitry are required to achieve the above-mentioned performance. With a total area of 2.2 × 8.67 mm2 and a power consumption of 36.5 mW, the presented probe enables full-system miniaturization for acute or chronic use in small rodents.


Asunto(s)
Neuronas/fisiología , Potenciales de Acción , Amplificadores Electrónicos , Conversión Analogo-Digital , Animales , Electrodos Implantados , Fenómenos Electrofisiológicos , Diseño de Equipo , Humanos , Miniaturización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...