Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mater Horiz ; 10(7): 2706, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37098689

RESUMEN

Correction for 'Elucidating the role of multivalency, shape, size and functional group density on antibacterial activity of diversified supramolecular nanostructures enabled by templated assembly' by Amrita Sikder et al., Mater. Horiz., 2023, 10, 171-178, https://doi.org/10.1039/D2MH01117D.

2.
Mater Horiz ; 10(1): 171-178, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36321619

RESUMEN

With the increased prevalence of antibiotic-resistant infections, there is an urgent need to develop novel antibacterial materials. In addition, gaining a complete understanding of the structural features that impart activity toward target microorganisms is essential to enable materials optimisation. Here we have reported a rational design to fabricate antibacterial supramolecular nanoparticles with variable shape, size and cationic group density, by exploiting noncovalent interactions between a shape determining template amphiphile and a cationic amphiphile to introduce charge on the nanoparticle surface. We have shown that the monomeric cationic amphiphile alone showed poor antibacterial activity, whereas nanostructures formed by co-assembling the complementary units showed significantly enhanced antibacterial efficiency. Further, the systematic variation of several structural parameters such as shape, spacing between the cationic groups and size of these nanostructures allowed us to elicit the role of each parameter on the overall antibacterial properties. Finally, we investigated the origin of the differing antibacterial activity of these nanoparticles having different shape and size but with the same molecular composition, by comparing the thermodynamic parameters of their binding interactions with a bacterial membrane mimic.


Asunto(s)
Nanopartículas , Nanoestructuras , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/uso terapéutico , Nanoestructuras/química , Nanopartículas/química , Bacterias , Termodinámica
3.
Nat Commun ; 13(1): 7385, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36450796

RESUMEN

As agriculture strives to feed an ever-increasing number of people, it must also adapt to increasing exposure to minute plastic particles. To learn about the accumulation of nanoplastics by plants, we prepared well-defined block copolymer nanoparticles by aqueous dispersion polymerisation. A fluorophore was incorporated via hydrazone formation and uptake into roots and protoplasts of Arabidopsis thaliana was investigated using confocal microscopy. Here we show that uptake is inversely proportional to nanoparticle size. Positively charged particles accumulate around root surfaces and are not taken up by roots or protoplasts, whereas negatively charged nanoparticles accumulate slowly and become prominent over time in the xylem of intact roots. Neutral nanoparticles penetrate rapidly into intact cells at the surfaces of plant roots and into protoplasts, but xylem loading is lower than for negative nanoparticles. These behaviours differ from those of animal cells and our results show that despite the protection of rigid cell walls, plants are accessible to nanoplastics in soil and water.


Asunto(s)
Arabidopsis , Nanopartículas , Animales , Polímeros , Microplásticos , Polimerizacion , Transporte Biológico , Agua
4.
Acc Chem Res ; 55(12): 1609-1619, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35671460

RESUMEN

The design and fabrication of synthetic self-assembled systems that can mimic some biological features require exquisitely sophisticated components that make use of supramolecular interactions to attain enhanced structural and functional complexity. In nature, nucleobase interactions play a key role in biological functions in living organisms, including transcription and translation processes. Inspired by nature, scientists are progressively exploring nucleobase synthons to create a diverse range of functional systems with a plethora of nanostructures by virtue of molecular-recognition-directed assembly and flexible programmability of the base-pairing interactions. To that end, nucleobase-functionalized molecules and macromolecules are attracting great attention because of their versatile structures with smart and adaptive material properties such as stimuli responsiveness, interaction with external agents, and ability to repair structural defects. In this regard, a range of nucleobase-interaction-mediated hierarchical self-assembled systems have been developed to obtain biomimetic materials with unique properties. For example, a new "grafting to" strategy utilizing complementary nucleobase interactions has been demonstrated to temporarily control the functional group display on micellar surfaces. In a different approach, complementary nucleobase interactions have been explored to enable morphological transitions in functionalized diblock copolymer assembly. It has been demonstrated that complementary nucleobase interactions can drive the morphological transformation to produce highly anisotropic nanoparticles by controlling the assembly processes at multiple length scales. Furthermore, nucleobase-functionalized bottle brush polymers have been employed to generate stimuli-responsive hierarchical assembly. Finally, such interactions have been exploited to induce biomimetic segregation in polymer self-assembly, which has been employed as a template to synthesize polymers with narrow polydispersity. It is evident from these examples that the optimal design of molecular building blocks and precise positioning of the nucleobase functionality are essential for fabrication of complex supramolecular assemblies. While a considerable amount of research remains to be explored, our studies have demonstrated the potential of nucleobase-interaction-mediated supramolecular assembly to be a promising field of research enabling the development of biomimetic materials.This Account summarizes recent examples that employ nucleobase interactions to generate functional biomaterials by judicious design of the building blocks. We begin by discussing the molecular recognition properties of different nucleobases, followed by different strategies to employ nucleobase interactions in polymeric systems in order to achieve self-assembled nanomaterials with versatile properties. Moreover, some of their prospective biological/material applications such as enhanced drug encapsulation, superior adhesion, and fast self-healing properties facilitated by complementary nucleobase interactions are emphasized. Finally, we identify issues and challenges that are faced by this class of materials and propose future directions for the exploration of functional materials with the aim of promoting the development of nucleobase-functionalized systems to design the next generation of biomaterials.


Asunto(s)
Biomimética , Polímeros , Materiales Biocompatibles , Sustancias Macromoleculares/química , Polímeros/química , Estudios Prospectivos
5.
Nanoscale ; 13(47): 20111-20118, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34846491

RESUMEN

Self-assembled supramolecular architectures are ubiquitous in nature. A synchronized combination of dynamic noncovalent interactions is the major driving force in forming unique structures with high-precision control over the self-assembly of supramolecular materials. Herein, we have achieved programmable nanostructures by introducing single/multiple H-bonding units in a supramolecular building block. A diverse range of nanostructures can be generated in aqueous medium by subtly tuning the structure of π-amphiphiles. 1D-cylindrical micelles, 2D-nanoribbons and hollow nanotubes are produced by systematically varying the number of H-bonding units (0-2) in structurally near identical π-amphiphiles. Spectroscopic measurements revealed the decisive role of H-bonding units for different modes of molecular packing. We have demonstrated that a competitive self-assembled state (a kinetically controlled aggregation state and a thermodynamically controlled aggregation state) can be generated by fine tuning the number of noncovalent forces present in the supramolecular building blocks. The luminescence properties of conjugated dithiomaleimide (DTM) provided insight into the relative hydrophobicity of the core in these nanostructures. In addition, fluorescence turn-off in the presence of thiophenol enabled us to probe the accessibility of the hydrophobic core in these assembled systems toward guest molecules. Therefore the DTM group provides an efficient tool to determine the relative hydrophobicity and accessibility of the core of various nanostructures which is very rarely studied in supramolecular assemblies.

6.
Acc Chem Res ; 54(11): 2670-2682, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34014638

RESUMEN

Bioinspired self-assembly has been explored with diverse synthetic scaffolds, among which amphiphiles are perhaps the most extensively studied systems. Classical surfactants or amphiphilic block copolymers, depending on the hydrophobic-hydrophilic balance, produce distinct nanostructures, which hold promise for applications ranging from biology to materials sciences. Nevertheless, their immiscibility-driven aggregation does not provide the opportunity to precisely regulate the internal order, morphology, or functional group display, which is highly desirable, especially in the context of biological applications.A new class of amphiphiles have emerged in the recent past in which the hydrophilic segment(s) is appended with a hydrophobic supramolecular-structure-directing-unit (SSDU), consisting of a π-conjugated chromophore and a H-bonding group. Self-recognition of the SSDU by attractive directional interactions governs the supramolecular assembly, which is fundamentally different than the repulsive solvent-immiscibility driven aggregation of traditional amphiphiles. Such SSDU-appended hydrophilic polymers exhibit entropy-driven highly stable self-assembly producing distinct nanostructures depending on the H-bonding functional group. For example, polymers with the hydrazide-functionalized SSDU attached form a polymersome, while in a sharp contrast, the same polymers when connected to an amide containing SSDU produce a cylindrical micelle via a spherical-micelle intermediate. This relationship holds true for a series of SSDU-attached hydrophilic polymers irrespective of the hydrophobic/hydrophilic balance or chemical structure, indicating that the supramolecular-assembly is primarily controlled by the specific molecular-recognition motif of the SSDU, instead of the packing parameter-based norms. Beyond synthetic polymers, SSDU-attached proteins also exhibit similar molecular-recognition driven self-assembly as well as coassembly with SSDU-attached polymers or hydrophilic wedges, producing multi-stimuli-responsive nanostructures in which the protein gains remarkable protection from thermal denaturation or enzymatic hydrolysis and exhibits redox-responsive enzymatic activity.Furthermore, SSDU-derived bola-shape π-amphiphiles have been recognized as a useful scaffold for the synthesis of unsymmetric polymersomes, rarely reported in the literature. The building block consists of a hydrophobic naphthalene-diimide (NDI) π-system attached to a hydrophilic functional group (ionic or nonionic) and a nonionic wedge on its two opposite arms. Extended H-bonding among the hydrazide groups, placed only on one side of the central chromophore by design, ensures stacking of the NDIs with parallel orientation and induces a preferred direction of curvature so that the H-bonded chain and consequently the functional groups attached to the same side remain at the inner-wall of the supramolecular polymersome. Automatically, the functional groups, located on the other side, are displayed at the outer surface. This design works for different amphiphiles, which by virtue of efficient and predictable functional group display, strongly influences the multivalent binding with different biological targets resulting in efficient enzyme inhibition, glycocluster effect, or antibacterial activity, depending on the nature of the functional group. By taking advantage of the electron accepting nature of the NDI, electron rich pyrene-containing amphiphiles can be costacked in alternating sequence, producing temperature and redox-responsive supramolecular polymers with NDI/pyrene stoichiometry-dependent morphology, lower critical solution temperature (LCST), functional group display, and antibacterial activity.


Asunto(s)
Proteínas/síntesis química , Tensoactivos/síntesis química , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Estructura Molecular , Proteínas/química , Tensoactivos/química , Temperatura
7.
ACS Biomater Sci Eng ; 6(1): 654-663, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33463225

RESUMEN

This article reports the antimicrobial activity of two segmented amphiphilic polyurethanes, PU-1 and PU-2, containing a primary or secondary amine group, respectively. In acidic water, intrachain H-bonding among the urethanes followed by hierarchical assembly resulted in the formation of capsules (Dh = 120 ± 20 and 100 ± 17 nm for PU-1 and PU-2, respectively) with a highly positive surface charge. They showed selective interactions with bacterial cell mimicking liposomes over mammalian cell mimicking liposomes with favorable enthalpy and entropy contributions, which was attributed to the electrostatic interaction and hydrophobic effect. Antimicrobial studies with Escherichia coli revealed very low minimum inhibitory concentration (MIC) values of 7.8 and 15.6 µg/mL for PU-1 and PU-2, respectively, indicating their ability to efficiently kill Gram-negative bacteria. Killing of Gram-positive Staphylococcus aureus was noticed only at C = 500 µg/mL, indicating unprecedented selectivity for E. coli, which was further confirmed by scanning electron microscopy (SEM) studies. Hemolysis assay revealed HC50 values of 453 and 847 µg/mL for PU-1 and PU-2, respectively, which were >50 times higher than their respective MIC values, thus making them attractive antimicrobial materials. Ortho-nitrophenyl-ß-galactoside (ONPG) assay and live-dead fluorescence assay confirmed that for both the polymers, a membrane disruption pathway was operative for wrapping of the bacterial membrane, similar to what was proposed for antimicrobial peptides. SEM images of polymer-treated E. coli bacteria helped in visualization of the pore formation and the disrupted membrane structure.


Asunto(s)
Antiinfecciosos , Escherichia coli , Animales , Cápsulas , Pruebas de Sensibilidad Microbiana , Poliuretanos
8.
J Phys Chem B ; 123(33): 7169-7177, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31348855

RESUMEN

This article elucidates H-bonding-regulated directional supramolecular assembly of naphthalene diimide (NDI)-derived unsymmetric cationic bola-shaped π-amphiphiles and systematic investigations on the thermodynamics of their interaction with bacteria mimic lipid vesicles and antimicrobial activity with mechanistic insights. Four NDI-amphiphiles (NDI-1, NDI-2, NDI-3, and NDI-2a) have been studied, all of which contain a central NDI chromophore, a nonionic wedge, an amine containing a head group, and a hydrazide group. In NDI-2 and NDI-2a, the hydrophilic wedge and the head group (pyridine) are the same but the location of the hydrazide group is different. On the basis of this difference, the pyridyl groups are displayed at the outer and inner walls of the vesicle, respectively. Isothermal titration calorimetry (ITC) studies revealed the spontaneous interaction of NDI-2 assembly with bacteria membrane mimic DPPE liposome (ΔG = -6.35 kcal/mol), whereas the NDI-2a assembly did not interact at all, confirming a strong influence of the H-bonding-regulated functional group display. On the other hand, the location of the hydrazide group remains the same in NDI-1, NDI-2, and NDI-3, but they differ in the head group structure. ITC binding studies confirmed spontaneous interaction of all three assemblies with DPPE liposome with negative ΔG values following the order NDI-1 > NDI-2 > NDI-3, indicating significant influence of the structure of the head group on the interaction with the model membrane. In fact, in all cases, the interaction was favorable both by enthalpy and entropy contribution, indicating dual involvement of the electrostatic interaction and hydrophobic effect. Notably, ΔS value for NDI-1 containing a tertiary amine head group was found to be significantly higher than that for NDI-3 containing a primary amine, which is attributed to the enhanced hydrophobic effect in the former case. Furthermore, ITC experiments revealed no interaction by any of these assemblies with the mammalian cell membrane mimic liposome, indicating their high selectivity toward bacterial membranes. Antimicrobial activity studies showed NDI-2 to be lethal selectively against Gram-positive bacteria, whereas NDI-2a did not show any activity. NDI-3 with a primary amine showed moderate activity but no selectivity over the erythrocytes. NDI-1 with the tertiary amine group was found to be the most outstanding candidate, exhibiting broad-spectrum antimicrobial activity with very low minimum inhibitory concentration values of 15.8 and 62 µg/mL for Staphylococcus aureus and Escherichia coli, respectively, and high selectivity over erythrocytes. These results fully corroborate with the physical insights obtained from the ITC studies on their interaction with the model liposome. Control molecules, lacking either the NDI chromophore or the hydrazide nonionic containing wedge, did not exhibit any notable antibacterial activity. Live-dead assay with fluorescence microscopy studies indicated that the antimicrobial activity of NDI-1 operates through the membrane disruption pathway similar to that of the host defense peptides.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Imidas/farmacología , Naftalenos/farmacología , Staphylococcus aureus/efectos de los fármacos , Tensoactivos/farmacología , Antibacterianos/química , Infecciones por Escherichia coli/tratamiento farmacológico , Humanos , Enlace de Hidrógeno , Imidas/química , Naftalenos/química , Infecciones Estafilocócicas/tratamiento farmacológico , Tensoactivos/química , Termodinámica
9.
Chemistry ; 25(44): 10464-10471, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31111971

RESUMEN

Programmable assembly of biomolecules is a fast growing research area that aims to emulate nature's elegance in creating numerous hierarchical self-assembled structures, which are responsible for unimaginably difficult biological functions. Protein assembly is a particularly challenging task, owing to their structural diversity, conformational heterogeneity, and high molecular weight. This article reveals the ability of a supramolecular structure-directing unit (SSDU) to regulate the entropically favourable supramolecular assembly of a covalently conjugated protein (bovine serum albumin (BSA)) to produce well-defined protein-decorated micelles with remarkably high thermal stability, suppression of the thermal denaturation of the protein, and retention of enzymatic activity. Furthermore, a SSDU-appended thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) co-assembles with the SSDU-BSA conjugate because, in both cases, assembly was primarily driven by specific molecular recognition between the SSDUs. However, the resulting supramolecular protein-polymer conjugate exhibits distinctly different polymersome structure to that of the micellar particle produced by the protein-SSDU conjugate. In this case, the enzymatic activity can be significantly suppressed above the lower critical solution temperature of supramolecularly conjugated PNIPAM, possibly due to collapse of the de-solvated polymer chains on the protein surface.


Asunto(s)
Resinas Acrílicas/química , Albúmina Sérica Bovina/química , Imidas/química , Micelas , Nanopartículas/química , Naftalenos/química , Temperatura , Termodinámica
10.
Angew Chem Int Ed Engl ; 58(6): 1606-1611, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30421845

RESUMEN

Herein we describe the H-bonding-regulated nanostructure, thermodynamics, and multivalent binding of two bolaamphiphiles NDI-1 and NDI-2 consisting of a hydrophobic naphthalene diimide connected to a hydrophilic wedge by a H-bonding group and a glucose moiety on its two arms. NDI-1 and NDI-2 differ by the single H-bonding group, namely, hydrazide or amide, which triggers the formation of vesicles and cylindrical micelles, respectively. Although the extended H-bonding ensures stacking with head-to-head orientation and the formation of an array of the appended glucose moieties in both systems, the adaptive cylindrical structure exhibited superior multivalent binding with concanavalin A (ConA) to that of the vesicle. A control amphiphile lacking a H-bonding group assembled with a random lateral orientation to produce spherical micelles without any notable multivalent binding.

11.
Nanoscale ; 10(7): 3272-3280, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29384163

RESUMEN

This manuscript reports solvent tunable functional nano-assemblies of an unsymmetrical bola-shaped π-amphiphile (NDI-PY) which consists of a hydrophobic naphthalene-diimide (NDI) chromophore connected to a non-ionic hydrophilic wedge and a pyridine group at its two opposite arms. Importantly, it contains a hydrazide group located at the hydrophobic domain between the NDI-chromophore and the hydrophilic-wedge to drive the supramolecular assembly by directional H-bonding. NDI-PY exhibits spontaneous assembly in water as well as in a highly non-polar solvent like tetra-chloroethylene (TCE) by the synergistic effect of H-bonding and π-stacking interaction. Spectroscopy studies reveal almost identical self-assembly features in water and TCE with critical aggregation concentrations in the range of 0.3 mM, which matches the values obtained from the isothermal calorimetry (ITC) dilution experiment. Differential scanning calorimetry (DSC) experiments reveal a single endothermic peak at 31 °C (ΔH = -12.3 kJ mol-1) and 40 °C (ΔH = -5.35 kJ mol-1) for water and TCE, respectively, indicating marginally higher thermal stability in TCE, which is consistent with the FT-IR data, suggesting stronger H-bonding in TCE. Although the molecular assembly features appear to be similar, NDI-PY produces distinctly different mesoscopic structures in water and TCE. In water, it forms vesicles (Dh = 150-180 nm) with the pyridine groups displayed at the outer surface, while in TCE it generates a transparent gel (CGC = 8.0 mM) with a nanotubular (width ∼50 nm, wall thickness ∼10 nm) morphology. Powder X-ray diffraction studies show clearly different packing structures; in water a single sharp peak at the low angle (d = 19.3 Å, a little shorter than the extended length of the molecule) suggests the formation of a monolayer membrane, while in TCE several sharp peaks appear with the d values maintaining a ratio of 1 : 1/√3 : 1/2 : 1/√7 : 1/3 : 1/√12, indicating the formation of a 2D hexagonal lattice. Photoconductivity measurements reveal moderate electronic conduction in both cases. However, it shows a remarkable enhancement of the life time of the charge-carriers for the nanotubular structure compared to the vesicular morphology. On the other hand, the vesicles in water display antimicrobial activity against Gram-positive S. aureus with a highly promising MICLB value of 29.4 µg mL-1. In contrast, it does not lyse human red blood cells even at as high a concentration as 2.5 mg mL-1 (HC50 > 2.5 mg mL-1), implying high selectivity of the NDI-PY vesicles towards bacterial cells over mammalian cells. Display of the pyridine groups at the outer surface of the membrane enables molecular recognition by complementary H-bonding with a carboxylic acid group and thereby facilitates uptake of the attached pyrene chromophores in the NDI-membrane by charge-transfer interaction between the NDI acceptor and the pyrene donor. In fact a Job's plot experiment reveals maximum uptake at a 1 : 1 ratio of the NDI-PY and the pyrene guest, indicating all the pyridine groups are accessible at the vesicular surface.

12.
Langmuir ; 34(3): 868-875, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28742972

RESUMEN

The article describes the self-assembly of a series of unsymmetrical bola-shaped π-amphiphiles (NDI-1, NDI-1a, NDI-2, NDI-3, and NDI-4) consisting of a hydrophobic naphthalene-diimide (NDI) chromophore attached to a nonionic hydrophilic wedge and an anionic headgroup in the two opposite arms of the central NDI. By design, only a single hydrazide group is linked either on the ionic or nonionic arm of the NDI. NDI-1 and NDI-1a are regioisomers differing only in the location of the hydrazide group, placed in the nonionic or ionic arm, respectively. NDI-2, NDI-3, and NDI-4 are similar to NDI-1 in the placement of the hydrazide group but differ in the nature of the ionic headgroups. Except for NDI-2, all of them exhibit spontaneous vesicle structures in water (pH 9.0) as established by electron microscopy, small-angle neutron scattering, dynamic light scattering, and spectroscopy studies. Supramolecularly assembled oligo-oxyethylene chains of the hydrophobic wedge exhibited a lower critical solution temperature (LCST) at ∼40 °C, similar to that of covalent polymers. Consequently, above the LCST, the bola-amphiphile was converted to a single headgroup surfactant, resulting in the collapse of the vesicular structure to nanoparticles. In all examples, the dominant H-bonding force among the hydrazide groups resulted in unidirectional orientation, leading to the formation of a nonsymmetric membrane with the H-bonded chain located at the inner wall. Therefore, the functional group displayed in these vesicles could be fully dictated by the location of the hydrazide group. Thus, for NDI-1, NDI-3, or NDI-4, the hydrazide group, located at the nonionic arm, directed the nonionic wedge to converge at the inner wall of the vesicle by displaying the anionic headgroups toward the outer surface. In contrast, NDI-1a formed a nonionic vesicle because in this case anionic headgroups were located at the inner wall of the membrane. Furthermore, among NDI-1, NDI-3, and NDI-4, the charge density of the anionic surface and accordingly the radius of curvature and particle size could be tuned precisely as a function of the extent of charge delocalization in the phenoxide or carboxylate headgroup. These distinct self-assembly modes resulted in very different abilities of these vesicles for electrostatic-interaction-driven biomolecular recognition, which was studied by testing their ability to bind with cationic protein chymotripsin and inhibit its enzymatic activity. The enzyme inhibition ability followed the order NDI-1 > NDI-3 > NDI-4 > NDI-2 ≈ NDI-1a, which could be rationalized by their distinct functional group display and surface charge density factors.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Imidas/química , Imidas/farmacología , Naftalenos/química , Naftalenos/farmacología , Colorantes/química , Modelos Moleculares , Conformación Molecular , Relación Estructura-Actividad , Propiedades de Superficie , Temperatura
13.
Chem Sci ; 8(2): 1040-1045, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28451242

RESUMEN

The presence of a bulky peripheral wedge destabilizes the homo-assembly of an amide functionalized acceptor (A) monomer and thereby enables the formation of an alternating supramolecular copolymer with an amide appended donor (D) monomer via the synergistic effect of H-bonding and the charge-transfer (CT) interaction with a remarkably high Ka of 31 000 M-1. In sharp contrast, H-bonding driven homo-polymers of A and D are formed by just replacing the bulky chains of the A monomer with linear hydrocarbons. By taking advantage of the clear difference in the critical temperature for the onset of the AA or DD homo-assemblies and DA co-assembly (TDA ≫ TAA or TDD), the supramolecular polymerization pathway of the NDI-monomer could be fully diverted from isodesmic to cooperative in the presence of a small amount of DAN which helped the in situ production of nucleating sites involving the D-A CT-complex at a relatively higher temperature and the subsequent chain growth at TAA following the nucleation-elongation model.

14.
Chemistry ; 22(6): 1908-1913, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26692300

RESUMEN

An adaptable and efficient molecular recognition pair has been established by taking advantage of the complementary nature of donor-acceptor interactions together with the strength of hydrogen bonds. Such distinct molecular recognition propagates in orthogonal directions to effect extended alternating co-assembly of two different appended molecular entities. The dimensions of the assembled structures can be tuned by stoichiometric imbalance between the donor and acceptor building blocks. The morphology of the self-assembled material can be correlated with the ratio of the two building blocks.

15.
Angew Chem Int Ed Engl ; 54(23): 6755-60, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25900082

RESUMEN

A unique supramolecular strategy enables the unidirectional assembly of two bola-shaped unsymmetric π-amphiphiles, NDI-1 and NDI-2, which feature a naphthalene-diimide chromophore connected to nonionic and anionic head groups on opposite arms. The amphiphiles differ only in the location of a hydrazide group, which is placed either on the nonionic or on the anionic arm of NDI-1 and NDI-2, respectively. The formation of hydrogen bonds between the hydrazides, which compensates for electrostatic and steric factors, promotes unidirectional alignment and the formation of monolayer vesicles. The zeta potentials and cation-assisted quantitative precipitation reveal negatively charged and nonionic outer surfaces for NDI-1 and NDI-2, respectively, indicating that hydrogen bonding also dictates the directionality of the monolayer curvature, ensuring that in both cases, the hydrazides remain at the inner wall to benefit from stronger hydrogen bonding where they are in closer proximity. This is reflected in their different abilities to inhibit α-chymotrypsin, which possesses a positively charged surface: NDI-1 induced an inhibition of 80% whereas hardly any inhibition was observed with NDI-2.


Asunto(s)
Inhibidores Enzimáticos/química , Imidas/química , Naftalenos/química , Quimotripsina/antagonistas & inhibidores , Quimotripsina/metabolismo , Inhibidores Enzimáticos/farmacología , Hidrazinas/química , Enlace de Hidrógeno , Imidas/farmacología , Estructura Molecular , Naftalenos/farmacología , Relación Estructura-Actividad
16.
Chemistry ; 19(7): 2337-43, 2013 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-23293089

RESUMEN

Room temperature photolysis of a triply-bridged borylene complex, [(µ(3)-BH)(Cp*RuCO)(2)(µ-CO)Fe(CO)(3)] (1 a; Cp* = C(5)Me(5)), in the presence of a series of alkynes, 1,2-diphenylethyne, 1-phenyl-1-propyne, and 2-butyne led to the isolation of unprecedented vinyl-borylene complexes (Z)-[(Cp*RuCO)(2)(µ-CO)B(CR)(CHR')] (2: R, R' = Ph; 3: R = Me, R' = Ph; 4: R, R' = Me). This reaction permits a hydroboration of alkyne through an anti-Markovnikov addition. In stark contrast, in the presence of phenylacetylene, a metallacarborane, closo-[1,2-(Cp*Ru)(2)(µ-CO)(2){Fe(2)(CO)(5)}-4-Ph-4,5-C(2)BH(2)] (5 a), is formed. A plausible mechanism has been proposed for the formation of vinyl-borylene complexes, which is supported by density functional theory (DFT) methods. Furthermore, the calculated (11)B NMR chemical shifts accurately reflect the experimentally measured shifts. All the new compounds have been characterized in solution by mass spectrometry and IR, (1)H, (11)B, and (13)C NMR spectroscopies and the structural types were unequivocally established by crystallographic analysis of 2, 5 a, and 5 b.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...