Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunity ; 56(5): 1098-1114.e10, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37003256

RESUMEN

Poor maternal diet during pregnancy is a risk factor for severe lower respiratory infections (sLRIs) in the offspring, but the underlying mechanisms remain elusive. Here, we demonstrate that in mice a maternal low-fiber diet (LFD) led to enhanced LRI severity in infants because of delayed plasmacytoid dendritic cell (pDC) recruitment and perturbation of regulatory T cell expansion in the lungs. LFD altered the composition of the maternal milk microbiome and assembling infant gut microbiome. These microbial changes reduced the secretion of the DC growth factor Flt3L by neonatal intestinal epithelial cells and impaired downstream pDC hematopoiesis. Therapy with a propionate-producing bacteria isolated from the milk of high-fiber diet-fed mothers, or supplementation with propionate, conferred protection against sLRI by restoring gut Flt3L expression and pDC hematopoiesis. Our findings identify a microbiome-dependent Flt3L axis in the gut that promotes pDC hematopoiesis in early life and confers disease resistance against sLRIs.


Asunto(s)
Microbiota , Infecciones del Sistema Respiratorio , Animales , Femenino , Ratones , Embarazo , Células Dendríticas , Dieta , Propionatos
2.
Molecules ; 27(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36144691

RESUMEN

Wendlandia tinctoria var. grandis (Roxb.) DC. (Family: Rubiaceae) is a semi-evergreen shrub distributed over tropical and subtropical Asia. The present research intended to explore the pharmacological potential of the stem extract of W. tinctoria, focusing on the antioxidant, hypoglycemic, and antidiarrheal properties, and to isolate various secondary metabolites as mediators of such activities. A total of eight phenolic compounds were isolated from the dichloromethane soluble fraction of the stem extract of this plant, which were characterized by electrospray ionization (ESI) mass spectrometric and 1H NMR spectroscopic data as liquiritigenin (1), naringenin (2), apigenin (3), kaempferol (4), glabridin (5), ferulic acid (6), 4-hydroxybenzoic acid (7), and 4-hydroxybenzaldehyde (8). The dichloromethane soluble fraction exhibited the highest phenolic content (289.87 ± 0.47 mg of GAE/g of dried extract) and the highest scavenging activity (IC50 = 18.83 ± 0.07 µg/mL) against the DPPH free radical. All of the isolated compounds, except 4-hydroxybenzaldehyde, exerted a higher antioxidant effect (IC50 = 6.20 ± 0.10 to 16.11 ± 0.02 µg/mL) than the standard butylated hydroxytoluene (BHT) (IC50 = 17.09 ± 0.01 µg/mL). Significant hypoglycemic and antidiarrheal activities of the methanolic crude extract at both doses (200 mg/kg bw and 400 mg/kg bw) were observed in a time-dependent manner. Furthermore, the computational modeling study supported the current in vitro and in vivo findings, and the isolated constituents had a higher or comparable binding affinity for glutathione reductase and urase oxidase enzymes, glucose transporter 3 (GLUT 3), and kappa-opioid receptor, inferring potential antioxidant, hypoglycemic, and antidiarrheal properties, respectively. This is the first report of all of these phenolic compounds being isolated from this plant species and even the first demonstration of the plant stem extract's antioxidant, hypoglycemic, and antidiarrheal potentials. According to the current findings, the W. tinctoria stem could be a potential natural remedy for treating oxidative stress, hyperglycemia, and diarrhea. Nevertheless, further extensive investigation is crucial for thorough phytochemical screening and determining the precise mechanisms of action of the plant-derived bioactive metabolites against broad-spectrum molecular targets.


Asunto(s)
Hiperglucemia , Rubiaceae , Antidiarreicos , Antioxidantes/química , Apigenina , Benzaldehídos , Hidroxitolueno Butilado , Diarrea , Radicales Libres , Proteínas Facilitadoras del Transporte de la Glucosa , Glutatión Reductasa , Hiperglucemia/tratamiento farmacológico , Hipoglucemiantes/farmacología , Quempferoles , Cloruro de Metileno , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Receptores Opioides
3.
J Immunol ; 208(12): 2806-2816, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35675958

RESUMEN

Infants with attenuated type III IFN (IFN-λ) responses are at increased risk of severe lower respiratory tract infection (sLRI). The IL-28Rα-chain and IL-10Rß-chain form a heterodimeric receptor complex, necessary for IFN-λ signaling. Therefore, to better understand the immunopathogenic mechanisms through which an IFN-λlo microenvironment predisposes to a sLRI, we inoculated neonatal wild-type and IL-28R-deficient (IL-28R -/-) mice with pneumonia virus of mice, a rodent-specific pneumovirus. Infected IL-28R -/- neonates displayed an early, pronounced, and persistent neutrophilia that was associated with enhanced reactive oxygen species (ROS) production, NETosis, and mucus hypersecretion. Targeted deletion of the IL-28R in neutrophils was sufficient to increase neutrophil activation, ROS production, NET formation, and mucus production in the airways. Inhibition of protein-arginine deiminase type 4 (PAD4), a regulator of NETosis, had no effect on myeloperoxidase expression, citrullinated histones, and the magnitude of the inflammatory response in the lungs of infected IL-28R -/- mice. In contrast, inhibition of ROS production decreased NET formation, cellular inflammation, and mucus hypersecretion. These data suggest that IFN-λ signaling in neutrophils dampens ROS-induced NETosis, limiting the magnitude of the inflammatory response and mucus production. Therapeutics that promote IFN-λ signaling may confer protection against sLRI.


Asunto(s)
Bronquiolitis Viral , Trampas Extracelulares , Interferones/metabolismo , Animales , Animales Recién Nacidos , Bronquiolitis Viral/metabolismo , Bronquiolitis Viral/patología , Trampas Extracelulares/metabolismo , Humanos , Ratones , NADPH Oxidasas/metabolismo , Neutrófilos/metabolismo , Arginina Deiminasa Proteína-Tipo 4 , Especies Reactivas de Oxígeno/metabolismo
4.
Am J Respir Crit Care Med ; 205(3): 300-312, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34860143

RESUMEN

Rationale: The alarmins IL-33 and HMGB1 (high mobility group box 1) contribute to type 2 inflammation and asthma pathogenesis. Objectives: To determine whether P2Y13-R (P2Y13 receptor), a purinergic GPCR (G protein-coupled receptor) and risk allele for asthma, regulates the release of IL-33 and HMGB1. Methods: Bronchial biopsy specimens were obtained from healthy subjects and subjects with asthma. Primary human airway epithelial cells (AECs), primary mouse AECs, or C57Bl/6 mice were inoculated with various aeroallergens or respiratory viruses, and the nuclear-to-cytoplasmic translocation and release of alarmins was measured by using immunohistochemistry and an ELISA. The role of P2Y13-R in AEC function and in the onset, progression, and exacerbation of experimental asthma was assessed by using pharmacological antagonists and mice with P2Y13-R gene deletion. Measurements and Main Results: Aeroallergen exposure induced the extracellular release of ADP and ATP, nucleotides that activate P2Y13-R. ATP, ADP, and aeroallergen (house dust mite, cockroach, or Alternaria antigen) or virus exposure induced the nuclear-to-cytoplasmic translocation and subsequent release of IL-33 and HMGB1, and this response was ablated by genetic deletion or pharmacological antagonism of P2Y13. In mice, prophylactic or therapeutic P2Y13-R blockade attenuated asthma onset and, critically, ablated the severity of a rhinovirus-associated exacerbation in a high-fidelity experimental model of chronic asthma. Moreover, P2Y13-R antagonism derepressed antiviral immunity, increasing IFN-λ production and decreasing viral copies in the lung. Conclusions: We identify P2Y13-R as a novel gatekeeper of the nuclear alarmins IL-33 and HMGB1 and demonstrate that the targeting of this GPCR via genetic deletion or treatment with a small-molecule antagonist protects against the onset and exacerbations of experimental asthma.


Asunto(s)
Asma/inmunología , Proteína HMGB1/metabolismo , Interleucina-33/metabolismo , Receptores Purinérgicos P2/metabolismo , Animales , Asma/metabolismo , Asma/fisiopatología , Biomarcadores/metabolismo , Estudios de Casos y Controles , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL
5.
Mucosal Immunol ; 13(4): 652-664, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32066837

RESUMEN

The type-2 inflammatory response that promotes asthma pathophysiology occurs in the absence of sufficient immunoregulation. Impaired regulatory T cell (Treg) function also predisposes to severe viral bronchiolitis in infancy, a major risk factor for asthma. Hence, we hypothesized that long-lived, aberrantly programmed Tregs causally link viral bronchiolitis with later asthma. Here we found that transient plasmacytoid dendritic cell (pDC) depletion during viral infection in early-life, which causes the expansion of aberrant Tregs, predisposes to allergen-induced or virus-induced asthma in later-life, and is associated with altered airway epithelial cell (AEC) responses and the expansion of impaired, long-lived Tregs. Critically, the adoptive transfer of aberrant Tregs (unlike healthy Tregs) to asthma-susceptible mice failed to prevent the development of viral-induced or allergen-induced asthma. Lack of protection was associated with increased airway epithelial cytoplasmic-HMGB1 (high-mobility group box 1), a pro-type-2 inflammatory alarmin, and granulocytic inflammation. Aberrant Tregs expressed lower levels of CD39, an ectonucleotidase that hydrolyzes extracellular ATP, a known inducer of alarmin release. Using cultured mouse AECs, we identify that healthy Tregs suppress allergen-induced HMGB1 translocation whereas this ability is markedly impaired in aberrant Tregs. Thus, defective Treg programming in infancy has durable consequences that underlie the association between bronchiolitis and subsequent asthma.


Asunto(s)
Asma/etiología , Asma/metabolismo , Bronquiolitis/etiología , Bronquiolitis/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Alérgenos/inmunología , Animales , Asma/patología , Biomarcadores , Bronquiolitis/patología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Proteína HMGB1/metabolismo , Inmunización , Ratones , Transporte de Proteínas , Índice de Severidad de la Enfermedad , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
6.
Allergy ; 75(2): 336-345, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31321783

RESUMEN

BACKGROUND: Phosphoprotein associated with glycosphingolipid-enriched microdomains 1 (PAG1) is a transmembrane adaptor protein that affects immune receptor signaling in T and B cells. Evidence from genome-wide association studies of asthma suggests that genetic variants that regulate the expression of PAG1 are associated with asthma risk. However, it is not known whether PAG1 expression is causally related to asthma pathophysiology. Here, we investigated the role of PAG1 in a preclinical mouse model of house dust mite (HDM)-induced allergic sensitization and allergic airway inflammation. METHODS: Pag1-deficient (Pag1-/- ) and wild-type (WT) mice were sensitized or sensitized/challenged to HDM, and hallmark features of allergic inflammation were assessed. The contribution of T cells was assessed through depletion (anti-CD4 antibody) and adoptive transfer studies. RESULTS: Type 2 inflammation (eosinophilia, eotaxin-2 expression, IL-4/IL-5/IL-13 production, mucus production) in the airways and lungs was significantly increased in HDM sensitized/challenged Pag1-/- mice compared to WT mice. The predisposition to allergic sensitization was associated with increased airway epithelial high-mobility group box 1 (HMGB1) translocation and release, increased type 2 innate lymphoid cells (ILC2s) and monocyte-derived dendritic cell numbers in the mediastinal lymph nodes, and increased T-helper type 2 (TH 2)-cell differentiation. CD4+ T-cell depletion studies or the adoptive transfer of WT OVA-specific CD4+ T cells to WT or Pag1-/- recipients demonstrated that the heightened propensity for TH 2-cell differentiation was both T cell intrinsic and extrinsic. CONCLUSION: PAG1 deficiency increased airway epithelial activation, ILC2 expansion, and TH 2 differentiation. As a consequence, PAG1 deficiency predisposed toward allergic sensitization and increased the severity of experimental asthma.


Asunto(s)
Alérgenos/inmunología , Asma/inmunología , Pulmón/inmunología , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Pyroglyphidae/inmunología , Células Th2/inmunología , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/inmunología , Linfocitos T CD4-Positivos/inmunología , Diferenciación Celular/genética , Citocinas/metabolismo , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Proteína HMGB1/metabolismo , Inmunidad Innata , Inflamación/inmunología , Pulmón/metabolismo , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfoproteínas/deficiencia , Fosfoproteínas/genética
7.
J Exp Med ; 215(2): 537-557, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29273643

RESUMEN

Respiratory syncytial virus-bronchiolitis is a major independent risk factor for subsequent asthma, but the causal mechanisms remain obscure. We identified that transient plasmacytoid dendritic cell (pDC) depletion during primary Pneumovirus infection alone predisposed to severe bronchiolitis in early life and subsequent asthma in later life after reinfection. pDC depletion ablated interferon production and increased viral load; however, the heightened immunopathology and susceptibility to subsequent asthma stemmed from a failure to expand functional neuropilin-1+ regulatory T (T reg) cells in the absence of pDC-derived semaphorin 4a (Sema4a). In adult mice, pDC depletion predisposed to severe bronchiolitis only after antibiotic treatment. Consistent with a protective role for the microbiome, treatment of pDC-depleted neonates with the microbial-derived metabolite propionate promoted Sema4a-dependent T reg cell expansion, ameliorating both diseases. In children with viral bronchiolitis, nasal propionate levels were decreased and correlated with an IL-6high/IL-10low microenvironment. We highlight a common but age-related Sema4a-mediated pathway by which pDCs and microbial colonization induce T reg cell expansion to protect against severe bronchiolitis and subsequent asthma.


Asunto(s)
Asma/prevención & control , Bronquiolitis Viral/prevención & control , Células Dendríticas/inmunología , Semaforinas/inmunología , Linfocitos T Reguladores/inmunología , Animales , Animales Recién Nacidos , Asma/inmunología , Bronquiolitis Viral/etiología , Bronquiolitis Viral/inmunología , Niño , Preescolar , Modelos Animales de Enfermedad , Ácidos Grasos Volátiles/inmunología , Ácidos Grasos Volátiles/metabolismo , Femenino , Humanos , Interleucina-10/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microbiota/inmunología , Receptor de Interferón alfa y beta/antagonistas & inhibidores , Receptor de Interferón alfa y beta/inmunología , Infecciones por Virus Sincitial Respiratorio/complicaciones , Infecciones por Virus Sincitial Respiratorio/inmunología , Semaforinas/antagonistas & inhibidores , Linfocitos T Reguladores/citología
8.
Front Immunol ; 8: 156, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28261214

RESUMEN

Severe viral lower respiratory infections are a major cause of infant morbidity. In developing countries, respiratory syncytial virus (RSV)-bronchiolitis induces significant mortality, whereas in developed nations the disease represents a major risk factor for subsequent asthma. Susceptibility to severe RSV-bronchiolitis is governed by gene-environmental interactions that affect the host response to RSV infection. Emerging evidence suggests that the excessive inflammatory response and ensuing immunopathology, typically as a consequence of insufficient immunoregulation, leads to long-term changes in immune cells and structural cells that render the host susceptible to subsequent environmental incursions. Thus, the initial host response to RSV may represent a tipping point in the balance between long-term respiratory health or chronic disease (e.g., asthma). The composition and diversity of the microbiota, which in humans stabilizes in the first year of life, critically affects the development and function of the immune system. Hence, perturbations to the maternal and/or infant microbiota are likely to have a profound impact on the host response to RSV and susceptibility to childhood asthma. Here, we review recent insights describing the effects of the microbiota on immune system homeostasis and respiratory disease and discuss the environmental factors that promote microbial dysbiosis in infancy. Ultimately, this knowledge will be harnessed for the prevention and treatment of severe viral bronchiolitis as a strategy to prevent the onset and development of asthma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...