Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes Dev ; 36(11-12): 699-717, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35710138

RESUMEN

How distal regulatory elements control gene transcription and chromatin topology is not clearly defined, yet these processes are closely linked in lineage specification during development. Through allele-specific genome editing and chromatin interaction analyses of the Sox2 locus in mouse embryonic stem cells, we found a striking disconnection between transcriptional control and chromatin architecture. We traced nearly all Sox2 transcriptional activation to a small number of key transcription factor binding sites, whose deletions have no effect on promoter-enhancer interaction frequencies or topological domain organization. Local chromatin architecture maintenance, including at the topologically associating domain (TAD) boundary downstream from the Sox2 enhancer, is widely distributed over multiple transcription factor-bound regions and maintained in a CTCF-independent manner. Furthermore, partial disruption of promoter-enhancer interactions by ectopic chromatin loop formation has no effect on Sox2 transcription. These findings indicate that many transcription factors are involved in modulating chromatin architecture independently of CTCF.


Asunto(s)
Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Factores de Transcripción SOXB1/genética , Animales , Cromatina , Regulación del Desarrollo de la Expresión Génica , Ratones , Factores de Transcripción/metabolismo
2.
Methods Mol Biol ; 2062: 147-167, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31768976

RESUMEN

The main 3'-5' exoribonucleolytic activity of eukaryotic cells is provided by the RNA exosome. The exosome is constituted by a core complex of nine subunits (Exo9), which coordinates the recruitment and the activities of distinct types of cofactors. The RNA exosome cofactors confer distributive and processive 3'-5' exoribonucleolytic, endoribonucleolytic, and RNA helicase activities. In addition, several RNA binding proteins and terminal nucleotidyltransferases also participate in the recognition of exosome RNA substrates.To fully understand the biological roles of the exosome, the respective functions of its cofactors must be deciphered. This entails the high-resolution analysis of 3' extremities of degradation or processing intermediates in different mutant backgrounds or growth conditions. Here, we describe a detailed 3' RACE-seq procedure for targeted mapping of exosome substrate 3' ends. This procedure combines a 3' RACE protocol with Illumina sequencing to enable the high-resolution mapping of 3' extremities and the identification of untemplated nucleotides for selected RNA targets.


Asunto(s)
Exosomas/genética , ARN/genética , Exorribonucleasas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Estabilidad del ARN/genética , Proteínas de Unión al ARN/genética , Análisis de Secuencia de ARN/métodos
3.
J Mol Biol ; 432(3): 653-664, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31863747

RESUMEN

Chromosome conformation capture and orthologous methods uncovered the spatial organization of metazoan chromosomes into autonomously folded substructures, often termed topologically associated domains (TADs). There is a striking correlation between TAD organization and hallmarks of genome function, such as histone modifications or gene expression, and disruptions of specific TAD structures have been associated with pathological misexpression of underlying genes. However, complete disruption of TADs seems to have mild effects on the transcriptome, raising questions as to the importance of chromatin topology in regulating the expression of most genes. Furthermore, despite a growing number of genetic perturbation studies, it is still largely unclear how TAD-like domains are defined, maintained, or potentially reorganized. This perspective article discusses the recent work exploring the complexity of the relationship between TADs and transcription, arguing that it is not satisfactorily explained by any of the "rules" that have been previously described.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Sustancias Macromoleculares/química , Sustancias Macromoleculares/metabolismo , Conformación Molecular , Animales , Regulación de la Expresión Génica , Transcripción Genética
4.
Genome Biol ; 20(1): 102, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31118054

RESUMEN

Capture Hi-C (CHi-C) is a new technique for assessing genome organization based on chromosome conformation capture coupled to oligonucleotide capture of regions of interest, such as gene promoters. Chromatin loop detection is challenging because existing Hi-C/4C-like tools, which make different assumptions about the technical biases presented, are often unsuitable. We describe a new approach, ChiCMaxima, which uses local maxima combined with limited filtering to detect DNA looping interactions, integrating information from biological replicates. ChiCMaxima shows more stringency and robustness compared to previously developed tools. The tool includes a GUI browser for flexible visualization of CHi-C profiles alongside epigenomic tracks.


Asunto(s)
Cromatina , Técnicas Genéticas , Genómica/métodos , Programas Informáticos
5.
Nat Commun ; 8(1): 2162, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29255150

RESUMEN

The RNA exosome provides eukaryotic cells with an essential 3'-5' exoribonucleolytic activity, which processes or eliminates many classes of RNAs. Its nine-subunit core (Exo9) is structurally related to prokaryotic phosphorolytic exoribonucleases. Yet, yeast and animal Exo9s have lost the primordial phosphorolytic capacity and rely instead on associated hydrolytic ribonucleases for catalytic activity. Here, we demonstrate that Arabidopsis Exo9 has retained a distributive phosphorolytic activity, which contributes to rRNA maturation processes, the hallmark of exosome function. High-density mapping of 3' extremities of rRNA maturation intermediates reveals the intricate interplay between three exoribonucleolytic activities coordinated by the plant exosome. Interestingly, the analysis of RRP41 protein diversity across eukaryotes suggests that Exo9's intrinsic activity operates throughout the green lineage, and possibly in some earlier-branching non-plant eukaryotes. Our results reveal a remarkable evolutionary variation of this essential RNA degradation machine in eukaryotes.


Asunto(s)
Arabidopsis/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , ARN de Planta/genética , ARN Ribosómico/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Exosomas/genética , Exosomas/metabolismo , Hidrólisis , Modelos Moleculares , Mutación , Plantas Modificadas Genéticamente , Conformación Proteica , Estabilidad del ARN , ARN de Planta/metabolismo , ARN Ribosómico/metabolismo , Homología de Secuencia de Aminoácido
6.
J Cell Biol ; 213(6): 693-704, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27325793

RESUMEN

Endoplasmic reticulum (ER) quality control mechanisms target terminally misfolded proteins for ER-associated degradation (ERAD). Misfolded glycophosphatidylinositol-anchored proteins (GPI-APs) are, however, generally poor ERAD substrates and are targeted mainly to the vacuole/lysosome for degradation, leading to predictions that a GPI anchor sterically obstructs ERAD. Here we analyzed the degradation of the misfolded GPI-AP Gas1* in yeast. We could efficiently route Gas1* to Hrd1-dependent ERAD and provide evidence that it contains a GPI anchor, ruling out that a GPI anchor obstructs ERAD. Instead, we show that the normally decreased susceptibility of Gas1* to ERAD is caused by canonical remodeling of its GPI anchor, which occurs in all GPI-APs and provides a protein-independent ER export signal. Thus, GPI anchor remodeling is independent of protein folding and leads to efficient ER export of even misfolded species. Our data imply that ER quality control is limited for the entire class of GPI-APs, many of them being clinically relevant.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Proteínas Fúngicas/metabolismo , Glicosilfosfatidilinositoles/metabolismo , Unión Proteica/fisiología , Pliegue de Proteína , Levaduras/metabolismo , Levaduras/fisiología
7.
Cell Rep ; 14(7): 1710-1722, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26876173

RESUMEN

The de novo formation of autophagosomes for the targeting of cytosolic material to the vacuole/lysosome is upregulated upon starvation. How autophagosomes acquire membranes remains still unclear. Here, we report that, in yeast, the endoplasmic reticulum (ER)-localized Qa/t-SNARE Ufe1 has a role in autophagy. During starvation, Ufe1 is increasingly exported from the ER and targeted to intracellular sites that contain the autophagy markers Atg8 and Atg9. In addition, Ufe1 interacts with non-ER SNARE proteins implicated in autophagosome formation. Loss of Ufe1 function impairs autophagy and results in fewer and smaller autophagosomes. Unlike conventional cargo, the ER export of Ufe1 is significantly reduced in sec23-1 cells, which affects the coat protein (COP)II complex, already at the permissive temperature. Under the same conditions, sec23-1 cells are hypersensitive to starvation and deficient in autophagy. Our data suggest that ER membranes containing Ufe1 are delivered to sites of autophagosome formation in specific COPII vesicles.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo , Retículo Endoplásmico/metabolismo , Regulación Fúngica de la Expresión Génica , Biogénesis de Organelos , Fagosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia , Proteínas Relacionadas con la Autofagia , Vesículas Cubiertas por Proteínas de Revestimiento/ultraestructura , Medios de Cultivo/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/ultraestructura , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/ultraestructura , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Nitrógeno/deficiencia , Fagosomas/efectos de los fármacos , Fagosomas/ultraestructura , Transporte de Proteínas , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Temperatura , Vacuolas/efectos de los fármacos , Vacuolas/metabolismo , Vacuolas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA