Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37298278

RESUMEN

The Mediator complex is a multi-subunit protein complex which plays a significant role in the regulation of eukaryotic gene transcription. It provides a platform for the interaction of transcriptional factors and RNA polymerase II, thus coupling external and internal stimuli with transcriptional programs. Molecular mechanisms underlying Mediator functioning are intensively studied, although most often using simple models such as tumor cell lines and yeast. Transgenic mouse models are required to study the role of Mediator components in physiological processes, disease, and development. As constitutive knockouts of most of the Mediator protein coding genes are embryonically lethal, conditional knockouts and corresponding activator strains are needed for these studies. Recently, they have become more easily available with the development of modern genetic engineering techniques. Here, we review existing mouse models for studying the Mediator, and data obtained in corresponding experiments.


Asunto(s)
Complejo Mediador , Factores de Transcripción , Animales , Ratones , Complejo Mediador/genética , Complejo Mediador/metabolismo , Factores de Transcripción/metabolismo , Núcleo Celular/metabolismo , ARN Polimerasa II/genética , Saccharomyces cerevisiae/metabolismo , Transcripción Genética
2.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047500

RESUMEN

A T cell receptor (TCR) consists of α- and ß-chains. Accumulating evidence suggests that some TCRs possess chain centricity, i.e., either of the hemi-chains can dominate in antigen recognition and dictate the TCR's specificity. The introduction of TCRα/ß into naive lymphocytes generates antigen-specific T cells that are ready to perform their functions. Transgenesis of the dominant active TCRα creates transgenic animals with improved anti-tumor immune control, and adoptive immunotherapy with TCRα-transduced T cells provides resistance to infections. However, the potential detrimental effects of the dominant hemi-chain TCR's expression in transgenic animals have not been well investigated. Here, we analyzed, in detail, the functional status of the immune system of recently generated 1D1a transgenic mice expressing the dominant active TCRα specific to the H2-Kb molecule. In their age dynamics, neither autoimmunity due to the random pairing of transgenic TCRα with endogenous TCRß variants nor significant disturbances in systemic homeostasis were detected in these mice. Although the specific immune response was considerably enhanced in 1D1a mice, responses to third-party alloantigens were not compromised, indicating that the expression of dominant active TCRα did not limit immune reactivity in transgenic mice. Our data suggest that TCRα transgene expression could delay thymic involution and maintain TCRß repertoire diversity in old transgenic mice. The detected changes in the systemic homeostasis in 1D1a transgenic mice, which are minor and primarily transient, may indicate variations in the ontogeny of wild-type and transgenic mouse lines.


Asunto(s)
Receptores de Antígenos de Linfocitos T alfa-beta , Linfocitos T , Ratones , Animales , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos/metabolismo
3.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36430553

RESUMEN

Inducible Cre-dependent systems are frequently used to produce both conditional knockouts and transgenic mice with regulated expression of the gene of interest. Induction can be achieved by doxycycline-dependent transcription of the wild type gene or OH-tamoxifen-dependent nuclear translocation of the chimeric Cre/ERT2 protein. However, both of these activation strategies have some limitations. We analyzed the efficiency of knockout in different tissues and found out that it correlates with the concentration of the hydroxytamoxifen and endoxifen-the active metabolites of tamoxifen-measured by LC-MS in these tissues. We also describe two cases of Cdk8floxed/floxed/Rosa-Cre-ERT2 mice tamoxifen-induced knockout limitations. In the first case, the standard scheme of tamoxifen administration does not lead to complete knockout formation in the brain or in the uterus. Tamoxifen metabolite measurements in multiple tissues were performed and it has been shown that low recombinase activity in the brain is due to the low levels of tamoxifen active metabolites. Increase of tamoxifen dosage (1.5 fold) and duration of activation (from 5 to 7 days) allowed us to significantly improve the knockout rate in the brain, but not in the uterus. In the second case, knockout induction during embryonic development was impossible due to the negative effect of tamoxifen on gestation. Although DNA editing in the embryos was achieved in some cases, the treatment led to different complications of the pregnancy in wild-type female mice. We propose to use doxycycline-induced Cre systems in such models.


Asunto(s)
Doxiciclina , Edición Génica , Tamoxifeno , Animales , Femenino , Ratones , Doxiciclina/farmacología , Edición Génica/métodos , Integrasas/genética , Integrasas/metabolismo , Ratones Transgénicos , Tamoxifeno/farmacología
4.
Biomed Opt Express ; 13(3): 1447-1456, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35414969

RESUMEN

Recipient cytoplast preparation, commonly performed by DNA aspiration with a needle, inevitably leads to the loss of reprogramming factors. As an alternative to the traditional enucleation technique, femtosecond laser enucleation can eliminate DNA effectively without loss of reprogramming factors and without oocyte puncturing. In this work we have performed oocyte enucleation by destructing the metaphase plate using a 795 nm femtosecond laser. The disability of the enucleated oocytes to develop after the parthenogenetic activation, as well as the lack of DNA staining luminescence, strongly confirms the efficiency of the femtosecond laser enucleation. The parthenogenetic development of oocytes after the cytoplasm treatment suggests a low-invasive effect of the laser enucleation technique.

5.
Am J Transl Res ; 11(8): 4614-4633, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31497187

RESUMEN

Atherosclerosis is a lipid-driven, chronic inflammatory disease that leads to plaque formation at specific sites of the arterial tree. Being the common cause of many cardiovascular disorders, atherosclerosis makes a tremendous impact on morbidity and mortality rates of cardiovascular diseases (CVDs) in countries with higher income. Animal models of atherosclerosis are utilized as useful tools for studying the aetiology, pathogenesis and complications of atherosclerosis, thus, providing a valuable platform for the efficacy testing of different pharmacological therapies and validation of imaging techniques. To date, a large variety of models is available. Pathophysiological changes can be induced in animals by either an atherogenic diet or genetic manipulations. The discussion of advantages and disadvantages of some murine, rabbit and porcine genetic models currently available for the atherosclerosis research is the scope of the following review.

6.
J Immunotoxicol ; 11(4): 393-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24308870

RESUMEN

The concept of immunological surveillance implies that immunogenic variants of tumor cells arising in the organism can be recognized by the immune system. Tumor progression is provided by somatic evolution of tumor cells under the pressure of the immune system. The loss of MHC Class I molecules on the surface of tumor cells is one of the most known outcomes of immune selection. This study developed a model of immune selection based on the immune response of TCR 1d1 single ß-chain transgenic B10.D2(R101) (K(d)I(d)D(b)) mice to allogeneic EL4 (H-2(b)) thymoma cells. In wild-type B10.D2(R101) mice, immunization with EL4 cells induced a vigorous CTL response targeted to the H-2K(b) molecule and results in full rejection of the tumor cells. In contrast, transgenic mice developed a compromised proliferative response in mixed-lymphocyte response assays and were unable to reject transplanted allogeneic EL4 cells. During the immune response to EL4 cells, CD8(+) T-lymphocytes with endogenous ß-chains accumulated predominantly in the spleen of transgenic mice and only a small part of the T-lymphocytes expressing transgenic ß-chains became CD8(+)CD44(+)CD62L(-) effectors. Then, instead of a full elimination of tumor cells as in wild-type mice, a reproducible prolonged equilibrium phase and subsequent escape was observed in transgenic mice that resulted in death of 90% of the mice in 40-60 days after grafting. Prolonged exposure of tumor cells to the pressure of the immune system in transgenic mice in vivo resulted in a stable loss of H-2K(b) molecules on the EL4 cell surface. Genetic manipulation of the T-lymphocyte repertoire was sufficient to reproduce the classic pattern of interactions between tumor cells and the immune system, usually observed in reliable syngeneic models of anti-tumor immunity. This newly-developed model could be used in further studies of immunoregulatory circuits common for transplantational and anti-tumor immune responses.


Asunto(s)
Linfocitos T CD8-positivos/fisiología , Vigilancia Inmunológica , Ratones , Modelos Animales , Timoma/inmunología , Animales , Línea Celular Tumoral , Células Cultivadas , Selección Clonal Mediada por Antígenos/genética , Citotoxicidad Inmunológica/genética , Genes Codificadores de la Cadena beta de los Receptores de Linfocito T/genética , Antígenos H-2/inmunología , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Trasplante de Neoplasias , Trasplante Homólogo , Escape del Tumor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA