Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Magn Reson Med ; 91(4): 1659-1675, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38031517

RESUMEN

PURPOSE: To investigate safety and performance aspects of parallel-transmit (pTx) RF control-modes for a body coil at B 0 ≤ 3 T $$ {B}_0\le 3\mathrm{T} $$ . METHODS: Electromagnetic simulations of 11 human voxel models in cardiac imaging position were conducted for B 0 = 0.5 T $$ {B}_0=0.5\mathrm{T} $$ , 1.5 T $$ 1.5\mathrm{T} $$ and 3 T $$ 3\mathrm{T} $$ and a body coil with a configurable number of transmit channels (1, 2, 4, 8, 16). Three safety modes were considered: the 'SAR-controlled mode' (SCM), where specific absorption rate (SAR) is limited directly, a 'phase agnostic SAR-controlled mode' (PASCM), where phase information is neglected, and a 'power-controlled mode' (PCM), where the voltage amplitude for each channel is limited. For either mode, safety limits were established based on a set of 'anchor' simulations and then evaluated in 'target' simulations on previously unseen models. The comparison allowed to derive safety factors accounting for varying patient anatomies. All control modes were compared in terms of the B 1 + $$ {B}_1^{+} $$ amplitude and homogeneity they permit under their respective safety requirements. RESULTS: Large safety factors (approximately five) are needed if only one or two anchor models are investigated but they shrink with increasing number of anchors. The achievable B 1 + $$ {B}_1^{+} $$ is highest for SCM but this advantage is reduced when the safety factor is included. PCM appears to be more robust against variations of subjects. PASCM performance is mostly in between SCM and PCM. Compared to standard circularly polarized (CP) excitation, pTx offers minor B 1 + $$ {B}_1^{+} $$ improvements if local SAR limits are always enforced. CONCLUSION: PTx body coils can safely be used at B 0 ≤ 3 T $$ {B}_0\le 3\mathrm{T} $$ . Uncertainties in patient anatomy must be accounted for, however, by simulating many models.


Asunto(s)
Corazón , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Simulación por Computador , Corazón/diagnóstico por imagen , Fantasmas de Imagen , Ondas de Radio
2.
Magn Reson Med ; 90(6): 2608-2626, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37533167

RESUMEN

PURPOSE: To investigate a novel reduced RF heating method for imaging in the presence of active implanted medical devices (AIMDs) which employs a sensor-equipped implant that provides wireless feedback. METHODS: The implant, consisting of a generator case and a lead, measures RF-induced E $$ E $$ -fields at the implant tip using a simple sensor in the generator case and transmits these values wirelessly to the MR scanner. Based on the sensor signal alone, parallel transmission (pTx) excitation vectors were calculated to suppress tip heating and maintain image quality. A sensor-based imaging metric was introduced to assess the image quality. The methodology was studied at 7T in testbed experiments, and at a 3T scanner in an ASTM phantom containing AIMDs instrumented with six realistic deep brain stimulation (DBS) lead configurations adapted from patients. RESULTS: The implant successfully measured RF-induced E $$ E $$ -fields (Pearson correlation coefficient squared [R2 ] = 0.93) and temperature rises (R2 = 0.95) at the implant tip. The implant acquired the relevant data needed to calculate the pTx excitation vectors and transmitted them wirelessly to the MR scanner within a single shot RF sequence (<60 ms). Temperature rises for six realistic DBS lead configurations were reduced to 0.03-0.14 K for heating suppression modes compared to 0.52-3.33 K for the worst-case heating, while imaging quality remained comparable (five of six lead imaging scores were ≥0.80/1.00) to conventional circular polarization (CP) images. CONCLUSION: Implants with sensors that can communicate with an MR scanner can substantially improve safety for patients in a fast and automated manner, easing the current burden for MR personnel.


Asunto(s)
Estimulación Encefálica Profunda , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Prótesis e Implantes , Fantasmas de Imagen , Calor , Ondas de Radio
3.
NMR Biomed ; 36(7): e4900, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36624556

RESUMEN

To protect implant carriers in MRI from excessive radiofrequency (RF) heating it has previously been suggested to assess that hazard via sensors on the implant. Other work recommended parallel transmission (pTx) to actively mitigate implant-related heating. Here, both ideas are integrated into one comprehensive safety concept where native pTx safety (without implant) is ensured by state-of-the-art field simulations and the implant-specific hazard is quantified in situ using physical sensors. The concept is demonstrated by electromagnetic simulations performed on a human voxel model with a simplified spinal-cord implant in an eight-channel pTx body coil at 3 T . To integrate implant and native safety, the sensor signal must be calibrated in terms of an established safety metric (e.g., specific absorption rate [SAR]). Virtual experiments show that E -field and implant-current sensors are well suited for this purpose, while temperature sensors require some caution, and B 1 probes are inadequate. Based on an implant sensor matrix Q s , constructed in situ from sensor readings, and precomputed native SAR limits, a vector space of safe RF excitations is determined where both global (native) and local (implant-related) safety requirements are satisfied. Within this safe-excitation subspace, the solution with the best image quality in terms of B 1 + magnitude and homogeneity is then found by a straightforward optimization algorithm. In the investigated example, the optimized pTx shim provides a 3-fold higher mean B 1 + magnitude compared with circularly polarized excitation for a maximum implant-related temperature increase ∆ T imp ≤ 1 K . To date, sensor-equipped implants interfaced to a pTx scanner exist as demonstrator items in research labs, but commercial devices are not yet within sight. This paper aims to demonstrate the significant benefits of such an approach and how this could impact implant-related RF safety in MRI. Today, the responsibility for safe implant scanning lies with the implant manufacturer and the MRI operator; within the sensor concept, the MRI manufacturer would assume much of the operator's current responsibility.


Asunto(s)
Calor , Ondas de Radio , Humanos , Simulación por Computador , Fantasmas de Imagen , Imagen por Resonancia Magnética/métodos
4.
Magn Reson Med ; 87(1): 509-527, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34397114

RESUMEN

PURPOSE: Rapid detection and mitigation of radiofrequency (RF)-induced implant heating during MRI based on small and low-cost embedded sensors. THEORY AND METHODS: A diode and a thermistor are embedded at the tip of an elongated mock implant. RF-induced voltages or temperature change measured by these root mean square (RMS) sensors are used to construct the sensor Q-Matrix (QS ). Hazard prediction, monitoring and parallel transmit (pTx)-based mitigation using these sensors is demonstrated in benchtop measurements at 300 MHz and within a 3T MRI. RESULTS: QS acquisition and mitigation can be performed in <20 ms demonstrating real-time capability. The acquisitions can be performed using safe low powers (<3 W) due to the high reading precision of the diode (126 µV) and thermistor (26 µK). The orthogonal projection method used for pTx mitigation was able to reduce the induced signals and temperatures in all 155 investigated locations. Using the QS approach in a pTx capable 3T MRI with either a two-channel body coil or an eight-channel head coil, RF-induced heating was successfully assessed, monitored and mitigated while the image quality outside the implant region was preserved. CONCLUSION: Small (<1.5 mm3 ) and low-cost (<1 €) RMS sensors embedded in an implant can provide all relevant information to predict, monitor and mitigate RF-induced heating in implants, while preserving image quality. The proposed pTx-based QS approach is independent of simulations or in vitro testing and therefore complements these existing safety assessments.


Asunto(s)
Calefacción , Calor , Imagen por Resonancia Magnética , Fantasmas de Imagen , Prótesis e Implantes , Ondas de Radio
5.
Magn Reson Med ; 84(6): 3468-3484, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32639681

RESUMEN

PURPOSE: To implement a modular, flexible, open-source hardware configuration for parallel transmission (pTx) experiments on medical implant safety and to demonstrate real-time mitigation strategies for radio frequency (RF) induced implant heating based on sensor measurements. METHODS: The hardware comprises a home-built 8-channel pTx system (scalable to 32-channels), wideband power amplifiers and a positioning system with submillimeter precision. The orthogonal projection (OP) method is used to mitigate RF induced tip heating and to maintain sufficient B1+ for imaging. Experiments are performed at 297MHz and inside a clinical 3T MRI using 8-channel pTx RF coils, a guidewire substitute inside a phantom with attached thermistor and time-domain E-field probes. RESULTS: Repeatability and precision are ~3% for E-field measurements including guidewire repositioning, ~3% for temperature slopes and an ~6% root-mean-square deviation between B1+ measurements and simulations. Real-time pTx mitigation with the OP mode reduces the E-fields everywhere within the investigated area with a maximum reduction factor of 26 compared to the circularly polarized mode. Tip heating was measured with ~100 µK resolution and ~14 Hz sampling frequency and showed substantial reduction for the OP vs CP mode. CONCLUSION: The pTx medical implant safety testbed presents a much-needed flexible and modular hardware configuration for the in-vitro assessment of implant safety, covering all field strengths from 0.5-7 T. Sensor based real-time mitigation strategies utilizing pTx and the OP method allow to substantially reduce RF induced implant heating while maintaining sufficient image quality without the need for a priori knowledge based on simulations or in-vitro testing.


Asunto(s)
Calefacción , Calor , Imagen por Resonancia Magnética , Fantasmas de Imagen , Prótesis e Implantes , Ondas de Radio
6.
Magn Reson Med ; 84(2): 1048-1060, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31961965

RESUMEN

PURPOSE: To dynamically minimize radiofrequency (RF)-induced heating of an active catheter through an automatic change of the termination impedance. METHODS: A prototype wireless module was designed that modifies the input impedance of an active catheter to keep the temperature rise during MRI below a threshold, ΔTmax . The wireless module (MR safety watchdog; MRsWD) measures the local temperature at the catheter tip using either a built-in thermistor or external data from a fiber-optical thermometer. It automatically changes the catheter input impedance until the temperature rise during MRI is minimized. If ΔTmax is exceeded, RF transmission is blocked by a feedback system. RESULTS: The thermistor and fiber-optical thermometer provided consistent temperature data in a phantom experiment. During MRI, the MRsWD was able to reduce the maximum temperature rise by 25% when operated in real-time feedback mode. CONCLUSION: This study demonstrates the technical feasibility of an MRsWD as an alternative or complementary approach to reduce RF-induced heating of active interventional devices. The automatic MRsWD can reduce heating using direct temperature measurements at the tip of the catheter. Given that temperature measurements are intrinsically slow, for a clinical implementation, a faster feedback parameter would be required such as the RF currents along the catheter or scattered electric fields at the tip.


Asunto(s)
Catéteres , Ondas de Radio , Impedancia Eléctrica , Retroalimentación , Imagen por Resonancia Magnética , Fantasmas de Imagen
7.
Magn Reson Med ; 83(6): 2370-2381, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31763729

RESUMEN

PURPOSE: To introduce a prototype active implantable medical device (AIMD) for which the induced radiofrequency currents can be controlled wirelessly. METHODS: The modified transmission line method is used to formulate how the lead-case impedance of an AIMD affects the temperature rise around the electrode. A prototype AIMD is designed with the aim of controlling the unwanted temperature rise around its electrode during an MRI examination by altering the impedance between the lead and the case of the implant. MRI experiments were conducted with this prototype implant, which also has a built-in temperature sensor at its electrode. During the experiment, the implant's lead-case impedance was controlled using Bluetooth communication with a remote computer, and the lead tip temperature was recorded. RESULTS: Ten different lead-case impedance values and their corresponding tip temperature rises were examined during MRI experiments. The experimental results confirmed that the tip temperature rise can be controlled by varying the lead-case impedance wirelessly. CONCLUSION: The feedback from the temperature at the AIMD tip, together with variable lead-case impedance, enables control of the safety profile of the AIMD during an MRI examination.


Asunto(s)
Prótesis e Implantes , Ondas de Radio , Impedancia Eléctrica , Electrodos , Imagen por Resonancia Magnética
8.
Magn Reson Med ; 79(5): 2824-2832, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28913978

RESUMEN

PURPOSE: To introduce a temperature sensor implant (TSI) that mimics an active implantable medical device (AIMD) for animal testing of MRI heating. Computer simulations and phantom experiments poorly represent potential temperature increases. Animal experiments could be a better model, but heating experiments conducted immediately after the surgery suffer from alterations of the thermoregulatory and tissue properties during acute testing conditions. Therefore, the aim of this study was to introduce a temperature sensor implant that mimics an AIMD and capable of measuring the electrode temperature after implantation of the device without any further intervention at any time after the surgery in an animal model. METHODS: A battery-operated TSI, which resembled an AIMD, was used to measure the lead temperature and impedance and the case temperature. The measured values were transmitted to an external computer via a low-power Bluetooth communication protocol. In addition to validation experiments on the phantom, a sheep experiment was conducted to test the feasibility of the system in subacute conditions. RESULTS: The measurements had a maximum of 0.5°C difference compared to fiber-optic temperature probes. In vivo animal experiments demonstrated feasibility of the system. CONCLUSION: An active implant, which can measure its own temperature, was proposed to investigate implant heating during MRI examinations. Magn Reson Med 79:2824-2832, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Calor/efectos adversos , Imagen por Resonancia Magnética/efectos adversos , Prótesis e Implantes , Termometría/instrumentación , Animales , Diseño de Equipo , Femenino , Seguridad del Paciente , Fantasmas de Imagen , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...