Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37961478

RESUMEN

Recent studies have highlighted the significance of the spindle midzone - the region positioned between chromosomes - in ensuring proper chromosome segregation. By combining advanced 3D electron tomography and cutting-edge light microscopy we have discovered a previously unknown role of the regulation of microtubule dynamics within the spindle midzone of C. elegans. Using Fluorescence recovery after photobleaching and a combination of second harmonic generation and two-photon fluorescence microscopy, we found that the length of the antiparallel microtubule overlap zone in the spindle midzone is constant throughout anaphase, and independent of cortical pulling forces as well as the presence of the microtubule bundling protein SPD-1. Further investigations of SPD-1 and the chromokinesin KLP-19 in C. elegans suggest that KLP-19 regulates the overlap length and functions independently of SPD-1. Our data shows that KLP-19 plays an active role in regulating the length and turn-over of microtubules within the midzone as well as the size of the antiparallel overlap region throughout mitosis. Depletion of KLP-19 in mitosis leads to an increase in microtubule length in the spindle midzone, which also leads to increased microtubule - microtubule interaction, thus building up a more robust microtubule network. The spindle is globally stiffer and more stable, which has implications for the transmission of forces within the spindle affecting chromosome segregation dynamics. Our data shows that by localizing KLP-19 to the spindle midzone in anaphase microtubule dynamics can be locally controlled allowing the formation of a functional midzone.

2.
J Alzheimers Dis ; 93(4): 1425-1441, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37182881

RESUMEN

BACKGROUND: In Alzheimer's disease (AD) brain, neuronal polarity and synaptic connectivity are compromised. A key structure for regulating polarity and functions of neurons is the axon initial segment (AIS), which segregates somatodendritic from axonal proteins and initiates action potentials. Toxic tau species, including extracellular oligomers (xcTauOs), spread tau pathology from neuron to neuron by a prion-like process, but few other cell biological effects of xcTauOs have been described. OBJECTIVE: Test the hypothesis that AIS structure is sensitive to xcTauOs. METHODS: Cultured wild type (WT) and tau knockout (KO) mouse cortical neurons were exposed to xcTauOs, and quantitative western blotting and immunofluorescence microscopy with anti-TRIM46 monitored effects on the AIS. The same methods were used to compare TRIM46 and two other resident AIS proteins in human hippocampal tissue obtained from AD and age-matched non-AD donors. RESULTS: Without affecting total TRIM46 levels, xcTauOs reduce the concentration of TRIM46 within the AIS and cause AIS shortening in cultured WT, but not TKO neurons. Lentiviral-driven tau expression in tau KO neurons rescues AIS length sensitivity to xcTauOs. In human AD hippocampus, the overall protein levels of multiple resident AIS proteins are unchanged compared to non-AD brain, but TRIM46 concentration within the AIS and AIS length are reduced in neurons containing neurofibrillary tangles. CONCLUSION: xcTauOs cause partial AIS damage in cultured neurons by a mechanism dependent on intracellular tau, thereby raising the possibility that the observed AIS reduction in AD neurons in vivo is caused by xcTauOs working in concert with endogenous neuronal tau.


Asunto(s)
Enfermedad de Alzheimer , Segmento Inicial del Axón , Ratones , Animales , Humanos , Segmento Inicial del Axón/metabolismo , Segmento Inicial del Axón/patología , Axones/patología , Neuronas/metabolismo , Enfermedad de Alzheimer/patología , Hipocampo/patología , Ratones Noqueados , Proteínas tau/genética , Proteínas tau/metabolismo
3.
Sci Rep ; 12(1): 11938, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831321

RESUMEN

Mitochondria are the central organelles in cellular bio-energetics with key roles to play in energy metabolism and cell fate decisions. Fluorescence Lifetime Imaging microscopy (FLIM) is used to track metabolic changes by following the intrinsic co-enzymes NAD(P)H and FAD, present in metabolic pathways. FLIM records-lifetimes and the relative fractions of free (unbound) and bound states of NAD(P)H and FAD are achieved by multiphoton excitation of a pulsed femto-second infra-red laser. Optimization of multiphoton laser power levels is critical to achieve sufficient photon counts for correct lifetime fitting while avoiding phototoxic effects. We have characterized two photon (2p) laser induced changes at the intra-cellular level, specifically in the mitochondria, where damage was assessed at rising 2p laser average power excitation. Our results show that NAD(P)H-a2%-the lifetime-based enzyme bound fraction, an indicator of mitochondrial OXPHOS activity is increased by rising average power, while inducing changes in the mitochondria at higher power levels, quantified by different probes. Treatment response tracked by means of NAD(P)H-a2% can be confounded by laser-induced damage producing the same effect. Our study demonstrates that 2p-laser power optimization is critical by characterizing changes in the mitochondria at increasing laser average power.


Asunto(s)
Flavina-Adenina Dinucleótido , NAD , Flavina-Adenina Dinucleótido/metabolismo , Rayos Láser , Microscopía Fluorescente/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Mitocondrias/metabolismo , NAD/metabolismo , NADP/metabolismo
4.
Methods Appl Fluoresc ; 8(2): 024001, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31972557

RESUMEN

Increasingly, the auto-fluorescent coenzymes NAD(P)H and FAD are being tracked by multi-photon fluorescence lifetime microscopy (FLIM) and used as versatile markers for changes in mammalian metabolism. The cellular redox state of different cell model systems, organoids and tissue sections is investigated in a range of pathologies where the metabolism is disrupted or reprogrammed; the latter is particularly relevant in cancer biology. Yet, the actual optimized process of acquiring images by FLIM, execute a correct lifetime fitting procedure and subsequent processing and analysis can be challenging for new users. Questions remain of how to optimize FLIM experiments, whether any potential photo-bleaching affects FLIM results and whether fixed specimens can be used in experiments. We have broken down the multi-step sequence into best-practice application of FLIM for NAD(P)H and FAD imaging, with images generated by a time-correlated-single-photon-counting (TCSPC) system, fitted with Becker & Hickl software and further processed with open-source ImageJ/Fiji and Python software.


Asunto(s)
Flavina-Adenina Dinucleótido/química , Microscopía Fluorescente/métodos , NAD/química , Imagen Óptica/métodos , Humanos
5.
J Alzheimers Dis ; 71(4): 1125-1138, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31524157

RESUMEN

Abnormal folding and aggregation of the microtubule-associated protein, tau, is a hallmark of several neurodegenerative disorders, including Alzheimer's disease (AD). Although normal tau is an intrinsically disordered protein, it does exhibit tertiary structure whereby the N- and C-termini are often in close proximity to each other and to the contiguous microtubule-binding repeat domains that extend C-terminally from the middle of the protein. Unfolding of this paperclip-like conformation might precede formation of toxic tau oligomers and filaments, like those found in AD brain. While there are many ways to monitor tau aggregation, methods to monitor changes in tau folding are not well established. Using full length human 2N4R tau doubly labeled with the Förster resonance energy transfer (FRET) compatible fluorescent proteins, Venus and Teal, on the N- and C-termini, respectively (Venus-Tau-Teal), intensity and lifetime FRET measurements were able to distinguish folded from unfolded tau in living cells independently of tau-tau intermolecular interactions. When expression was restricted to low levels in which tau-tau aggregation was minimized, Venus-Tau-Teal was sensitive to microtubule binding, phosphorylation, and pathogenic oligomers. Of particular interest is our finding that amyloid-ß oligomers (AßOs) trigger Venus-Tau-Teal unfolding in cultured mouse neurons. We thus provide direct experimental evidence that AßOs convert normally folded tau into a conformation thought to predominate in toxic tau aggregates. This finding provides further evidence for a mechanistic connection between Aß and tau at seminal stages of AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/metabolismo , Agregación Patológica de Proteínas , Proteínas tau/fisiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Sitios de Unión , Células Cultivadas , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Ratones , Microtúbulos/fisiología , Neuronas/fisiología , Pliegue de Proteína , Respuesta de Proteína Desplegada/fisiología
6.
Cytometry A ; 95(1): 110-121, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30604477

RESUMEN

Redox changes in live HeLa cervical cancer cells after doxorubicin treatment can either be analyzed by a novel fluorescence lifetime microscopy (FLIM)-based redox ratio NAD(P)H-a2%/FAD-a1%, called fluorescence lifetime redox ratio or one of its components (NAD(P)H-a2%), which is actually driving that ratio and offering a simpler and alternative metric and are both compared. Auto-fluorescent NAD(P)H, FAD lifetime is acquired by 2- photon excitation and Tryptophan by 3-photon, at 4 time points after treatment up to 60 min demonstrating early drug response to doxorubicin. Identical Fields-of-view (FoV) at each interval allows single-cell analysis, showing heterogeneous responses to treatment, largely based on their initial control redox state. Based on a discrete ROI selection method, mitochondrial OXPHOS and cytosolic glycolysis are discriminated. Furthermore, putative FRET interaction and energy transfer between tryptophan residue carrying enzymes and NAD(P)H correlate with NAD(P)H-a2%, as does the NADPH/NADH ratio, highlighting a multi-parametric assay to track metabolic changes in live specimens. © 2019 International Society for Advancement of Cytometry.


Asunto(s)
Mitocondrias/metabolismo , NADP/análisis , NAD/análisis , Triptófano/química , Citosol/efectos de los fármacos , Citosol/metabolismo , Doxorrubicina/farmacología , Metabolismo Energético/efectos de los fármacos , Flavina-Adenina Dinucleótido/análisis , Fluorescencia , Transferencia Resonante de Energía de Fluorescencia/métodos , Células HeLa , Humanos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Mitocondrias/efectos de los fármacos , NAD/efectos de los fármacos , NADP/efectos de los fármacos , Imagen Óptica , Oxidación-Reducción , Fosforilación Oxidativa/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Análisis de la Célula Individual/métodos
7.
Methods Mol Biol ; 1787: 129-146, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29736715

RESUMEN

Caenorhabditis elegans is the first and only metazoan model that enables whole-body gene knockdown by simply feeding their standard laboratory diet, E. coli, carrying RNA interference (RNAi)-expressing constructs. The simplicity of the RNAi treatment, small size, and fast reproduction rate of C. elegans allow us to perform whole-animal high-throughput genetic screens in wild-type, mutant, or otherwise genetically modified C. elegans. In addition, more than 65% of C. elegans genes are conserved in mammals including human. In particular, C. elegans metabolic pathways are highly conserved, which supports the study of complex diseases such as obesity in this genetically tractable model system. In this chapter, we present a detailed protocol for automated high-throughput whole-animal RNAi screening to identify the pathways promoting obesity in diet-induced and genetically driven obese C. elegans. We describe an optimized high-content screening protocol to score fat mass and body fat distribution in whole animals at large scale. We provide optimized pipelines to automatically score phenotypes using the open-source CellProfiler platform within the context of supercomputer clusters. Further, we present a guideline to optimize information workflow from the automated microscope to a searchable database. The approaches described here enable unveiling the whole network of gene-gene and gene-environment interactions that define metabolic health or disease status in this proven model of human disease, but similar principles can be applied to other disease models.


Asunto(s)
Redes Reguladoras de Genes , Obesidad/genética , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos , Redes Reguladoras de Genes/efectos de los fármacos , Predisposición Genética a la Enfermedad , Humanos , Imagen Molecular , Obesidad/metabolismo , Interferencia de ARN
8.
Sci Rep ; 8(1): 79, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29311591

RESUMEN

Multiphoton FLIM microscopy offers many opportunities to investigate processes in live cells, tissue and animal model systems. For redox measurements, FLIM data is mostly published by cell mean values and intensity-based redox ratios. Our method is based entirely on FLIM parameters generated by 3-detector time domain microscopy capturing autofluorescent signals of NAD(P)H, FAD and novel FLIM-FRET application of Tryptophan and NAD(P)H-a2%/FAD-a1% redox ratio. Furthermore, image data is analyzed in segmented cells thresholded by 2 × 2 pixel Regions of Interest (ROIs) to separate mitochondrial oxidative phosphorylation from cytosolic glycolysis in a prostate cancer cell line. Hundreds of data points allow demonstration of heterogeneity in response to intervention, identity of cell responders to treatment, creating thereby different sub-populations. Histograms and bar charts visualize differences between cells, analyzing whole cell versus mitochondrial morphology data, all based on discrete ROIs. This assay method allows to detect subtle differences in cellular and tissue responses, suggesting an advancement over means-based analyses.


Asunto(s)
Flavina-Adenina Dinucleótido/metabolismo , NADP/metabolismo , NAD/metabolismo , Neoplasias/metabolismo , Oxidación-Reducción , Animales , Citosol/metabolismo , Modelos Animales de Enfermedad , Doxorrubicina/farmacología , Glucosa/metabolismo , Xenoinjertos , Humanos , Microscopía Fluorescente , Mitocondrias/metabolismo , Imagen Molecular , Neoplasias/patología , Fosforilación Oxidativa
9.
Dev Cell ; 40(4): 367-380.e7, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28245922

RESUMEN

How the developmental potential of differentiating stem cell progeny becomes rapidly and stably restricted following asymmetric stem cell division is unclear. In the fly larval brain, earmuff (erm) uniquely functions to restrict the developmental potential of intermediate neural progenitors (INPs) generated by asymmetrically dividing neural stem cells (neuroblasts). Here we demonstrate that the histone deacetylase Hdac1/Rpd3 functions together with self-renewal transcriptional repressors to maintain the erm immature INP enhancer in an inactive but poised state in neuroblasts. Within 2 hr of immature INP birth, downregulation of repressor activities alleviates Rpd3-mediated repression on the erm enhancer, enabling acetylation of multiple histone proteins and activating Erm expression. Erm restricts the developmental potential in immature INPs by repressing genes encoding neuroblast transcriptional activators. We propose that poising the fast-activating enhancers of master regulators of differentiation through continual histone deacetylation in stem cells enables self-renewal and rapid restriction of developmental potential following asymmetric division.


Asunto(s)
División Celular Asimétrica , Autorrenovación de las Células , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/embriología , Histona Desacetilasa 1/metabolismo , Acetilación , Animales , Secuencia de Bases , Sitios de Unión/genética , Diferenciación Celular/genética , Secuencia de Consenso/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Elementos de Facilitación Genéticos/genética , Retroalimentación Fisiológica , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Modelos Biológicos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/citología , Neuronas/metabolismo , Unión Proteica/genética , Proteínas Represoras/metabolismo , Reproducibilidad de los Resultados , Transcripción Genética
10.
Development ; 144(5): 820-829, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28126840

RESUMEN

Correct positioning of stem cells within their niche is essential for tissue morphogenesis and homeostasis. How stem cells acquire and maintain niche position remains largely unknown. Here, we show that a subset of brain neuroblasts (NBs) in Drosophila utilize Phosphoinositide 3-kinase (PI3-kinase) and DE-cadherin to build adhesive contact for NB niche positioning. NBs remain within their native microenvironment when levels of PI3-kinase activity and DE-cadherin are elevated in NBs. This occurs through PI3-kinase-dependent regulation of DE-Cadherin-mediated cell adhesion between NBs and neighboring cortex glia, and between NBs and their ganglion mother cell daughters. When levels of PI3-kinase activity and/or DE-Cadherin are reduced in NBs, NBs lose niche position and relocate to a non-native brain region that is rich in neurosecretory neurons, including those that secrete some of the Drosophila insulin-like peptides. Linking levels of PI3-kinase activity to the strength of adhesive attachment could provide cancer stem cells and hematopoietic stem cells with a means to cycle from trophic-poor to trophic-rich microenvironments.


Asunto(s)
Encéfalo/embriología , Cadherinas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/citología , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Adhesión Celular , Proliferación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Mitosis , Morfogénesis , Neuroglía/metabolismo , Neuronas/citología
11.
Nat Cell Biol ; 11(4): 365-74, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19337318

RESUMEN

Development of a multicellular organism from a fertilized egg depends on a precise balance between symmetric cell divisions to expand the pool of similar cells, and asymmetric cell divisions to create cell-type diversity. Spindle orientation can influence the generation of symmetric or asymmetric cell fates depending on how it is coupled to cell-intrinsic polarity cues, or how it is positioned relative to cell-extrinsic cues such as niche-derived signals. In this review, we describe the mechanism of spindle orientation in budding yeast, Drosophila melanogaster, Caenorhabditis elegans and mammalian neural progenitors, with the goal of highlighting conserved mechanisms and indicating open questions for the future.


Asunto(s)
División Celular , Huso Acromático/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Polaridad Celular , Drosophila/citología , Saccharomycetales/citología
12.
Dev Biol ; 319(1): 1-9, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18485341

RESUMEN

Mitotic spindle orientation in polarized cells determines whether they divide symmetrically or asymmetrically. Moreover, regulated spindle orientation may be important for embryonic development, stem cell biology, and tumor growth. Drosophila neuroblasts align their spindle along an apical/basal cortical polarity axis to self-renew an apical neuroblast and generate a basal differentiating cell. It is unknown whether spindle alignment requires both apical and basal cues, nor have molecular motors been identified that regulate spindle movement. Using live imaging of neuroblasts within intact larval brains, we detect independent movement of both apical and basal spindle poles, suggesting that forces act on both poles. We show that reducing astral microtubules decreases the frequency of spindle movement, but not its maximum velocity, suggesting that one or few microtubules can move the spindle. Mutants in the Lis1/dynactin complex strongly decrease maximum and average spindle velocity, consistent with this motor complex mediating spindle/cortex forces. Loss of either astral microtubules or Lis1/dynactin leads to spindle/cortical polarity alignment defects at metaphase, but these are rescued by telophase. We propose that an early Lis1/dynactin-dependent pathway and a late Lis1/dynactin-independent pathway regulate neuroblast spindle orientation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/citología , Metafase , Proteínas Asociadas a Microtúbulos/metabolismo , Huso Acromático/metabolismo , Animales , Encéfalo/citología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Complejo Dinactina , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Mutación , Profase
13.
Proc Natl Acad Sci U S A ; 104(36): 14306-11, 2007 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-17726110

RESUMEN

Drosophila neuroblasts divide asymmetrically by aligning their mitotic spindle with cortical cell polarity to generate distinct sibling cell types. Neuroblasts asymmetrically localize Galphai, Pins, and Mud proteins; Pins/Galphai direct cortical polarity, whereas Mud is required for spindle orientation. It is currently unknown how Galphai-Pins-Mud binding is regulated to link cortical polarity with spindle orientation. Here, we show that Pins forms a "closed" state via intramolecular GoLoco-tetratricopeptide repeat (TPR) interactions, which regulate Mud binding. Biochemical, genetic, and live imaging experiments show that Galphai binds to the first of three Pins GoLoco motifs to recruit Pins to the apical cortex without "opening" Pins or recruiting Mud. However, Galphai and Mud bind cooperatively to the Pins GoLocos 2/3 and tetratricopeptide repeat domains, respectively, thereby restricting Pins-Mud interaction to the apical cortex and fixing spindle orientation. We conclude that Pins has multiple activity states that generate cortical polarity and link it with mitotic spindle orientation.


Asunto(s)
Blastómeros/metabolismo , Polaridad Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Neuronas/metabolismo , Huso Acromático/metabolismo , Animales , Blastómeros/citología , Proteínas de Ciclo Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Regulación del Desarrollo de la Expresión Génica , Inhibidores de Disociación de Guanina Nucleótido/genética , Larva/citología , Larva/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Unión Proteica
14.
Nat Cell Biol ; 8(6): 594-600, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16648843

RESUMEN

Asymmetric cell division generates cell diversity during development and regulates stem-cell self-renewal in Drosophila and mammals. In Drosophila, neuroblasts align their spindle with a cortical Partner of Inscuteable (Pins)-G alpha i crescent to divide asymmetrically, but the link between cortical polarity and the mitotic spindle is poorly understood. Here, we show that Pins directly binds, and coimmunoprecipitates with, the NuMA-related Mushroom body defect (Mud) protein. Pins recruits Mud to the neuroblast apical cortex, and Mud is also strongly localized to centrosome/spindle poles, in a similar way to NuMA. In mud mutants, cortical polarity is normal, but the metaphase spindle frequently fails to align with the cortical polarity axis. When spindle orientation is orthogonal to cell polarity, symmetric division occurs. We propose that Mud is a functional orthologue of mammalian NuMA and Caenorhabditis elegans Lin-5, and that Mud coordinates spindle orientation with cortical polarity to promote asymmetric cell division.


Asunto(s)
Polaridad Celular , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Huso Acromático , Animales , Antígenos Nucleares , Proteínas de Ciclo Celular , División Celular , Centrosoma , Drosophila , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Proteínas Asociadas a Matriz Nuclear , Unión Proteica
15.
Mol Biol Cell ; 16(11): 5127-40, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16107559

RESUMEN

Lis1 is required for nuclear migration in fungi, cell cycle progression in mammals, and the formation of a folded cerebral cortex in humans. Lis1 binds dynactin and the dynein motor complex, but the role of Lis1 in many dynein/dynactin-dependent processes is not clearly understood. Here we generate and/or characterize mutants for Drosophila Lis1 and a dynactin subunit, Glued, to investigate the role of Lis1/dynactin in mitotic checkpoint function. In addition, we develop an improved time-lapse video microscopy technique that allows live imaging of GFP-Lis1, GFP-Rod checkpoint protein, green fluorescent protein (GFP)-labeled chromosomes, or GFP-labeled mitotic spindle dynamics in neuroblasts within whole larval brain explants. Our mutant analyses show that Lis1/dynactin have at least two independent functions during mitosis: first promoting centrosome separation and bipolar spindle assembly during prophase/prometaphase, and subsequently generating interkinetochore tension and transporting checkpoint proteins off kinetochores during metaphase, thus promoting timely anaphase onset. Furthermore, we show that Lis1/dynactin/dynein physically associate and colocalize on centrosomes, spindle MTs, and kinetochores, and that regulation of Lis1/dynactin kinetochore localization in Drosophila differs from both Caenorhabditis elegans and mammals. We conclude that Lis1/dynactin act together to regulate multiple, independent functions in mitotic cells, including spindle formation and cell cycle checkpoint release.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Huso Acromático/fisiología , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/embriología , Proteínas de Caenorhabditis elegans , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centrosoma/metabolismo , Complejo Dinactina , Dineínas/fisiología , Epistasis Genética , Técnicas In Vitro , Cinetocoros/metabolismo , Larva , Microscopía por Video , Mitosis , Modelos Biológicos , Huso Acromático/genética
16.
Curr Biol ; 14(2): 138-44, 2004 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-14738736

RESUMEN

Asymmetric cell division generates cell diversity in bacteria, yeast, and higher eukaryotes. In Drosophila, both neural and muscle progenitors divide asymmetrically. In these cells the Inscuteable (Insc) protein complex coordinates cell polarity and spindle orientation. Abstrakt (Abs) is a DEAD-box protein that regulates aspects of cell polarity in oocytes and embryos. We use a conditional allele of abs to investigate its role in neural and muscle progenitor cell polarity. In neuroblasts we observe loss of apical Insc crescents, failure in basal protein targeting, and defects in spindle orientation. In the GMC4-2a cell we observe loss of apical Insc crescents, defects in basal protein targeting, and equalization of sibling neuron fates; muscle precursors show a similar equalization of sibling cell fates. These phenotypes resemble those of insc mutants; indeed, abs mutants show a striking loss of Insc protein levels but no change of insc RNA levels. Furthermore, we find that the Abs protein physically interacts with insc RNA. Our results demonstrate a novel role for Abs in the posttranscriptional regulation of insc expression, which is essential for proper cell polarity, spindle orientation, and the establishment of distinct sibling cell fates within embryonic neural and muscle progenitors.


Asunto(s)
Polaridad Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Proteínas Nucleares/metabolismo , Huso Acromático/fisiología , Animales , Western Blotting , Diferenciación Celular/fisiología , División Celular/fisiología , Drosophila , Inmunohistoquímica , Neuropéptidos , Huso Acromático/metabolismo , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...