RESUMEN
OBJECTIVE AND DESIGN: Respiratory syncytial virus (RSV) is the major cause of infection in children up to 2 years old and reinfection is very common among patients. Tissue damage in the lung caused by RSV leads to an immune response and infected cells activate multiple signaling pathways and massive production of inflammatory mediators like macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine. Therefore, we sought to investigate the role of MIF during RSV infection in macrophages. METHODS: We evaluated MIF expression in BALB/c mice-derived macrophages stimulated with different concentrations of RSV by Western blot and real-time PCR. Additionally, different inhibitors of signaling pathways and ROS were used to evaluate their importance for MIF expression. Furthermore, we used a specific MIF inhibitor, ISO-1, to evaluate the role of MIF in viral clearance and in RSV-induced TNF-α, MCP-1 and IL-10 release from macrophages. RESULTS: We showed that RSV induces MIF expression dependently of ROS, 5-LOX, COX and PI3K activation. Moreover, viral replication is necessary for RSV-triggered MIF expression. Differently, p38 MAPK in only partially needed for RSV-induced MIF expression. In addition, MIF is important for the release of TNF-α, MCP-1 and IL-10 triggered by RSV in macrophages. CONCLUSIONS: In conclusion, we demonstrate that MIF is expressed during RSV infection and controls the release of pro-inflammatory cytokines from macrophages in an in vitro model.
Asunto(s)
Citocinas/inmunología , Factores Inhibidores de la Migración de Macrófagos/inmunología , Macrófagos/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Animales , Líquido del Lavado Bronquioalveolar , Factores Inhibidores de la Migración de Macrófagos/genética , Macrófagos/virología , Ratones Endogámicos BALB C , Transducción de Señal , Carga ViralRESUMEN
AIM: The dengue virus is responsible for a high worldwide incidence of infections, aggravated by late diagnosis, and often confused with other tropical diseases. Results/methodology: Oligonucleotide aptamers binding to the 5'-UTR from dengue virus selected after eight rounds by systematic evolution of ligands by exponential enrichment technology were analyzed by dot-blot assay and in silico prediction of secondary structures, demonstrating the presence of stem-loops that may have the potential for interaction with the viral genome, which can lead to loss of their original conformation. CONCLUSION: This is the first description of RNA aptamers against functional RNA elements of the dengue virus genome with implications for disease control, which may have potential as tools in the future of antiviral therapies and for diagnostics.
Asunto(s)
Regiones no Traducidas 5'/efectos de los fármacos , Antivirales/farmacología , Aptámeros de Nucleótidos/farmacología , Virus del Dengue/efectos de los fármacos , Oligonucleótidos/farmacología , Regiones no Traducidas 5'/genética , Antivirales/química , Aptámeros de Nucleótidos/química , Sitios de Unión/efectos de los fármacos , Virus del Dengue/genética , Ligandos , Pruebas de Sensibilidad Microbiana , Oligonucleótidos/química , Relación Estructura-ActividadRESUMEN
BACKGROUND: The Li-Fraumeni syndrome (LFS) is an inherited rare cancer predisposition syndrome characterized by a variety of early-onset tumors. Although germline mutations in the tumor suppressor gene TP53 account for over 50% of the families matching LFS criteria, the lack of TP53 mutation in a significant proportion of LFS families, suggests that other types of inherited alterations must contribute to their cancer susceptibility. Recently, increases in copy number variation (CNV) have been reported in LFS individuals, and are also postulated to contribute to LFS phenotypic variability. METHODS: Seventy probands from families fulfilling clinical criteria for either Li-Fraumeni or Li-Fraumeni-like (LFS/LFL) syndromes and negative for TP53 mutations were screened for germline CNVs. RESULTS: We found a significantly increased number of rare CNVs, which were smaller in size and presented higher gene density compared to the control group. These data were similar to the findings we reported previously on a cohort of patients with germline TP53 mutations, showing that LFS/LFL patients, regardless of their TP53 status, also share similar CNV profiles. CONCLUSION: These results, in conjunction with our previous analyses, suggest that both TP53-negative and positive LFS/LFL patients present a broad spectrum of germline genetic alterations affecting multiple loci, and that the genetic basis of LFS/LFL predisposition or penetrance in many cases might reside in germline transmission of CNVs.
Asunto(s)
Variaciones en el Número de Copia de ADN , Genes p53 , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Síndrome de Li-Fraumeni/complicaciones , Neoplasias/complicaciones , Humanos , Síndrome de Li-Fraumeni/genética , Neoplasias/genéticaAsunto(s)
Poliposis Adenomatosa del Colon/genética , Proteínas Portadoras/genética , Mutación de Línea Germinal , Glicoproteínas/genética , Síndrome de Li-Fraumeni/genética , Poliposis Adenomatosa del Colon/diagnóstico , Adolescente , Adulto , Edad de Inicio , Anciano , Estudios de Casos y Controles , Niño , Variaciones en el Número de Copia de ADN , Eliminación de Gen , Predisposición Genética a la Enfermedad , Humanos , Proteínas de Transporte de Membrana , Persona de Mediana Edad , Receptores de Superficie Celular/genética , Proteína p53 Supresora de Tumor/genéticaRESUMEN
BACKGROUND: The Li-Fraumeni syndrome (LFS), an inherited rare cancer predisposition syndrome characterized by a variety of early-onset tumors, is caused by different highly penetrant germline mutations in the TP53 gene; each separate mutation has dissimilar functional and phenotypic effects, which partially clarifies the reported heterogeneity between LFS families. Increases in copy number variation (CNV) have been reported in TP53 mutated individuals, and are also postulated to contribute to LFS phenotypic variability. The Brazilian p.R337H TP53 mutation has particular functional and regulatory properties that differ from most other common LFS TP53 mutations, by conferring a strikingly milder phenotype. METHODS: We compared the CNV profiles of controls, and LFS individuals carrying either p.R337H or DNA binding domain (DBD) TP53 mutations by high resolution array-CGH. RESULTS: Although we did not find any significant difference in the frequency of CNVs between LFS patients and controls, our data indicated an increased proportion of rare CNVs per genome in patients carrying DBD mutations compared to both controls (p=0.0002***) and p.R337H (0.0156*) mutants. CONCLUSIONS: The larger accumulation of rare CNVs in DBD mutants may contribute to the reported anticipation and severity of the syndrome; likewise the fact that p.R337H individuals do not present the same magnitude of rare CNV accumulation may also explain the maintenance of this mutation at relatively high frequency in some populations.