Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 9(7)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37504744

RESUMEN

Multiresistant pathogens pose a serious threat to human health. The genus Candida is one class of human pathogenic yeasts responsible for infections affecting healthy and immunocompromised patients. In this context, plant essential oils emerged as a future natural alternative to control the diseases caused by these pathogens. Based on that, the present study aimed to evaluate the antimicrobial potential of essential oil from C. pluriglandulosus and understand the mechanism of action. Here, it highlighted antimicrobial activity and the mechanisms of action of the essential oil extracted from C. pluriglandulosus Carn.-Torres & Riina (CpEO) leaves on human pathogenic microorganisms in planktonic and biofilm lifestyles. In addition, for the first time, the oil composition was revealed by GC-MS analysis and the toxicity to human red blood cells (HRBC). Twenty-six chemical compounds were identified in CpEO, elemicin, bicyclogermacrene, caryophyllene, brevifolin, and 2,4,6-trimethoxy-styrene. Through hemolytic assay, it was shown that CpEO has no toxicity to human RBCs. At the concentration of 50 µg mL-1, CpEO did not show great antibacterial potential. However, promising data were found for C. krusei and C. parapsilosis inhibiting by 89.3% and 80.7% of planktonic cell growth and 83.5% and 77.9% the biofilm formation, respectively. Furthermore, the mechanisms of action CpEO were elucidated by fluorescence. Scanning electron microscopy revealed damage to the cell membrane and pore formation, ROS overproduction, and induction of apoptosis in candida cells. Our results reinforce the potential of CpEO as an effective alternative molecule of pharmaceutical interest.

2.
Chem Biol Interact ; 382: 110639, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37468117

RESUMEN

Lectins are proteins of non-immunological origin with the ability to bind to carbohydrates reversibly. They emerge as an alternative to conventional antifungals, given the ability to interact with carbohydrates in the fungal cell wall inhibiting fungal growth. The lectin from D. violacea (DVL) already has its activity described as anti-candida in some species. Here, we observed the anti-candida effect of DVL on C. albicans, C. krusei and C. parapsilosis and its multiple mechanisms of action toward the yeasts. Additionally, it was observed that DVL induces membrane and cell wall damage and ROS overproduction. DVL was also able to cause an imbalance in the redox system of the cells, interact with ergosterol, inhibit ergosterol biosynthesis, and induce cytochrome c release from the mitochondrial membrane. These results endorse the potential application of DVL in developing a new antifungal drug to fight back against fungal resistance.


Asunto(s)
Dioclea , Lectinas , Lectinas/farmacología , Candida/metabolismo , Dioclea/metabolismo , Lectinas de Plantas/farmacología , Lectinas de Plantas/metabolismo , Antifúngicos/farmacología , Carbohidratos , Semillas/metabolismo , Ergosterol , Candida albicans , Pruebas de Sensibilidad Microbiana
3.
Food Chem ; 403: 134319, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36182849

RESUMEN

Calotropis procera cysteine peptidases (CpCPs) have presented several potential biotechnological applications. Here, these enzymes were immobilized on glyoxyl-agarose (glyoxyl-CpCPs) with yields of 90-95 % and the recovered activities ranged from 10 % to 15 %, according to enzyme loadings (5, 10, 20, 40, and 50 mgBSAeq/g). Spectrophotometric assays and SDS-PAGE showed that the casein hydrolysis by glyoxyl-CpCPs was similar to soluble CpCPs. In addition, glyoxyl-CpCPs exhibited similar ratio of milk-clotting activity to proteolytic activity in comparison with soluble CpCPs and chymosin. Even after being stored for six months at 8 °C, the residual proteolytic activity of glyoxyl-CpCPs remained close to 100 %. Atomic force microscopy and dynamic light scattering techniques showed that the process of casein micelle aggregation after treatment with glyoxyl-CpCPs was very similar to its soluble form and chymosin. Glyoxyl-CpCPs performed well after five reaction cycles, producing cheeses with yield, moisture, protein, and fat similar to those produced with chymosin.


Asunto(s)
Calotropis , Proteasas de Cisteína , Sefarosa , Quimosina , Cisteína , Caseínas , Proteasas de Cisteína/metabolismo , Concentración de Iones de Hidrógeno , Enzimas Inmovilizadas/metabolismo
4.
Antibiotics (Basel) ; 11(12)2022 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-36551410

RESUMEN

Klebsiella pneumoniae is a multidrug-resistant opportunistic human pathogen related to various infections. As such, synthetic peptides have emerged as potential alternative molecules. Mo-CBP3-PepI has presented great activity against K. pneumoniae by presenting an MIC50 at a very low concentration (31.25 µg mL-1). Here, fluorescence microscopy and proteomic analysis revealed the alteration in cell membrane permeability, ROS overproduction, and protein profile of K. pneumoniae cells treated with Mo-CBP3-PepI. Mo-CBP3-PepI led to ROS overaccumulation and membrane pore formation in K. pneumoniae cells. Furthermore, the proteomic analysis highlighted changes in essential metabolic pathways. For example, after treatment of K. pneumoniae cells with Mo-CBP3-PepI, a reduction in the abundance of protein related to DNA and protein metabolism, cytoskeleton and cell wall organization, redox metabolism, regulation factors, ribosomal proteins, and resistance to antibiotics was seen. The reduction in proteins involved in vital processes for cell life, such as DNA repair, cell wall turnover, and protein turnover, results in the accumulation of ROS, driving the cell to death. Our findings indicated that Mo-CBP3-PepI might have mechanisms of action against K. pneumoniae cells, mitigating the development of resistance and thus being a potent molecule to be employed in producing new drugs against K. pneumoniae infections.

5.
J Fungi (Basel) ; 8(11)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36354914

RESUMEN

Antimicrobial drugs are becoming ineffective given the resistance acquired by microorganisms. As such, it is imperative to seek new antimicrobial molecules that could provide a basis for the development of new drugs. Therefore, this work aimed to evaluate the antimicrobial potential and the mechanisms of action of the essential oil extracted from leaves of Croton blanchetianus (named CbEO) on different fungi and bacteria of clinical importance in both planktonic and biofilm lifestyles. GC-MS/MS analysis revealed the presence of twenty-two different compounds in the CbEO, which were identified using the Kovats retention index. Among these, the most abundant were amorphene (20.03%), spathulenol (5%), bicyclogermacrene (1.49%), caryophyllene oxide (4.55%), and eucalyptol (5.62%). CbOE (50 µg mL-1) barely inhibited the growth of Bacillus subtilis (23%), Pseudomonas aeruginosa (27%), and Salmonella enterica (28%), and no inhibition was obtained against Enterobacter aerogenes and Klebsiella pneumoniae. Additionally, no activity against bacterial biofilm was detected. In contrast, CbEO was active against Candida species. C. albicans and C. parapsilosis were inhibited by 78 and 75%, respectively. The antibiofilm potential also was favorable against C. albicans and C. parapsilosis, inhibiting 44 and 74% of biofilm formation and reducing around 41 and 27% of the preformed biofilm, respectively. CbOE caused membrane damage and pore formation, overproduction of ROS, and apoptosis on C. albicans and C. parapsilosis cells, as well as not inducing hemolysis in human red cells. The results obtained in this work raise the possibility of using the essential oil of C. blanchetianus leaves as an alternative to fight infections caused by C. albicans and C. parapsilosis.

6.
Pharmaceutics ; 14(8)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36015304

RESUMEN

Cryptococcus neoformans is a human-pathogenic yeast responsible for pneumonia and meningitis, mainly in patients immunocompromised. Infections caused by C. neoformans are a global health concern. Synthetic antimicrobial peptides (SAMPs) have emerged as alternative molecules to cope with fungal infections, including C. neoformans. Here, eight SAMPs were tested regarding their antifungal potential against C. neoformans and had their mechanisms of action elucidated by fluorescence and scanning electron microscopies. Five SAMPs showed an inhibitory effect (MIC50) on C. neoformans growth at low concentrations. Fluorescence microscope (FM) revealed that SAMPs induced 6-kDa pores in the C. neoformans membrane. Inhibitory assays in the presence of ergosterol revealed that some peptides lost their activity, suggesting interaction with it. Furthermore, FM analysis revealed that SAMPs induced caspase 3/7-mediated apoptosis and DNA degradation in C. neoformans cells. Scanning Electron Microscopy (SEM) analysis revealed that peptides induced many morphological alterations such as cell membrane, wall damage, and loss of internal content on C. neoformans cells. Our results strongly suggest synthetic peptides are potential alternative molecules to control C. neoformans growth and treat the cryptococcal infection.

7.
Anal Biochem ; 655: 114851, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35977597

RESUMEN

L: operculata is a plant commonly found in the North and Northeast of Brazil. Although the regional population knows its medicinal potential, there are few scientific studies about its antimicrobial potential. Thus, this study aimed to characterize the proteins from L. operculata seeds extracted using different solutions and evaluate their antimicrobial potentials. The protein extracts obtained with NaCl and sodium acetate buffer presented the best inhibitory activities against Candida albicans and C. krusei. The study of the mechanism of action revealed proteins from L. operculata seeds induced pore formation on the membrane and ROS overaccumulation. Scanning Electron Microscopy images also showed severe morphological changes in Candida albicans and C. krusei. Proteins from L.operculata seeds did not show antibacterial activity. The enzymatic assays revealed the presence of proteolytic enzymes, serine and cysteine protease inhibitors, and chitinases in both protein extracts. Proteomic analysis by LC-ESI-MS/MS identified 57 proteins related to many biological processes, such as defense to (a)biotic stress, energetic metabolism, protein folding, and nucleotide metabolism. In conclusion, the L. operculata seed proteins have biotechnological potential against the human pathogenic yeasts Candida albicans and C. krusei.


Asunto(s)
Candida albicans , Luffa , Antibacterianos , Humanos , Pruebas de Sensibilidad Microbiana , Proteómica , Semillas , Espectrometría de Masas en Tándem
8.
Antibiotics (Basel) ; 11(5)2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35625197

RESUMEN

C. albicans and C. parapsilosis are biofilm-forming yeasts responsible for bloodstream infections that can cause death. Synthetic antimicrobial peptides (SAMPs) are considered to be new weapons to combat these infections, alone or combined with drugs. Here, two SAMPs, called Mo-CBP3-PepI and Mo-CBP3-PepIII, were tested alone or combined with nystatin (NYS) and itraconazole (ITR) against C. albicans and C. parapsilosis biofilms. Furthermore, the mechanism of antibiofilm activity was evaluated by fluorescence and scanning electron microscopies. When combined with SAMPs, the results revealed a 2- to 4-fold improvement of NYS and ITR antibiofilm activity. Microscopic analyses showed cell membrane and wall damage and ROS overproduction, which caused leakage of internal content and cell death. Taken together, these results suggest the potential of Mo-CBP3-PepI and Mo-CBP3-PepIII as new drugs and adjuvants to increase the activity of conventional drugs for the treatment of clinical infections caused by C. albicans and C. parapsilosis.

9.
Food Chem ; 373(Pt A): 131410, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34710691

RESUMEN

Antimicrobial peptides (AMPs) have been reported to be promising alternatives to chemical preservatives. Thus, this study aimed to characterise AMPs generated from the hydrolysis of wheat gluten proteins using latex peptidases of Calotropis procera, Cryptostegia grandiflora, and Carica papaya. The three hydrolysates (obtained after 16 h at 37 °C, using a 1: 25 enzyme:  substrate ratio) inhibited the growth of Aspergillus niger, A. chevalieri, Trichoderma reesei, Pythium oligandrum, Penicillium sp., and Lasiodiplodia sp. by 60-90%, and delayed fungal growth on bread by 3 days when used at 0.3 g/kg. Moreover, the specific volume and expansion factor of bread were not affected by the hydrolysates. Of 28 peptides identified, four were synthesised and exhibited activity against Penicillium sp. Fluorescence and scanning electron microscopy suggested that the peptides damaged the fungal plasma membrane. Bioinformatics analysis showed that no peptide was toxic and that the antigenic ones had cleavage sites for trypsin or pepsin.


Asunto(s)
Calotropis , Látex , Péptidos Antimicrobianos , Aspergillus niger , Pan , Péptido Hidrolasas , Péptidos
10.
Food Res Int ; 147: 110582, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34399551

RESUMEN

Fungal contamination is among the main reasons for food spoilage, affecting food safety and the economy. Among fungi, Penicillium digitatum is a major agent of this problem. Here, the in vitro activity of eight synthetic antimicrobial peptides was assessed against P. digitatum, and their action mechanisms were evaluated. All peptides were able to inhibit fungal growth. Furthermore, atomic force and fluorescence microscopies revealed that all peptides targeted the fungal membrane leading to pore formation, loss of internal content, and death. The induction of high levels of reactive oxygen species (ROS) was also a mechanism employed by some peptides. Interestingly, only three peptides (PepGAT, PepKAA, and Mo-CBP3-PepI) effectively control P. digitatum colonization in orange fruits, at a concentration (50 µg mL-1) 20-fold lower than the commercial food preservative (sodium propionate). Altogether, PepGAT, PepKAA, and Mo-CBP3-PepI showed high biotechnological potential as new food preservatives to control food infection by P. digitatum.


Asunto(s)
Citrus sinensis , Penicillium , Frutas , Proteínas Citotóxicas Formadoras de Poros
11.
J Agric Food Chem ; 69(17): 5049-5058, 2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-33891815

RESUMEN

Vigna unguiculata is an important source of proteins and energy for humans and animals. However, postharvest losses caused by Callosobruchus maculatus can reach from 20 to 100% of stored seeds. In this study, the insecticide potential of compounds extracted from Himatanthus drasticus latex was assessed. The latex was extracted with ethanol (70%) and then partitioned through sequential use of hexane and chloroform. These fractions were investigated by chromatography to determine their chemical composition. Plumieride, identified in a hydroalcoholic subfraction, was tested for insecticidal activity against C. maculatus. The ethanolic fraction (LC50 = 0.109; LC90 = 0.106%) and the plumieride (LC50 = 0.166; LC90 = 0.167%) were lethal to larvae. Plumieride (0.25%) delayed larval development, and mortality reached 100%. Its inhibitory action on intestinal α-amylase from larvae was higher (89.12%) than that of acarbose (63.82%). Plumieride (0.1%) inhibited the enzyme α-amylase in vivo in the larval intestine. This result was confirmed by a zymogram test performed by SDS-PAGE when the enzyme electrophoresed on gel copolymerized with starch. When spread on seeds, the hydroalcoholic fraction (1.0%) reduced infestation. The loss of seed mass was 5.26% compared to the control (44.97%). The results confirm the effect of latex compounds in protecting stored seeds against weevil infestation.


Asunto(s)
Apocynaceae , Escarabajos , Insecticidas , Vigna , Animales , Humanos , Látex , Semillas
12.
Life Sci ; 265: 118803, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33238167

RESUMEN

AIMS: According to the WHO, 20-25% of people worldwide are affected by skin infections caused by dermatophytes, such as those of the Trichophyton genus. Additionally, several dermatophytes have developed resistance to drugs such as griseofulvin and itraconazole. This study tested 2S albumins-derived antimicrobial peptides (AMPs) as alternative antidermatophytic molecules. MAIN METHODS: Membrane pore formation assays, tests to detect overproduction of ROS, scanning electron microscopy (SEM) and fluorescence microscopy (FM) were carried out to provide insight into the mechanisms of antidermatophytic action. KEY FINDINGS: All AMPs (at 50 µg mL-1) tested reduced the mycelial growth of T. mentagrophytes and T. rubrum by up to 95%. In contrast, using a concentration 20-fold higher, griseofulvin only inhibited T. mentagrophytes by 35%, while itraconazole was not active against both dermatophytes. Scanning electron and fluorescence microscopies revealed that the six AMPs caused severe damage to hyphal morphology by inducing cell wall rupture, hyphal content leakage, and death. Peptides also induced membrane pore formation and oxidative stress by overproduction of ROS. Based on the stronger activity of peptides than the commercial drugs and the mechanism of action, all six peptides have the potential to be either employed as models to develop new antidermatophytic drugs or as adjuvants to existing ones. SIGNIFICANCE: The synthetic peptides are more efficient than conventional drug to treat infection caused by dermatophytes being potential molecules to develop new drugs.


Asunto(s)
Antifúngicos/farmacología , Arthrodermataceae/efectos de los fármacos , Griseofulvina/farmacología , Itraconazol/farmacología , Fragmentos de Péptidos/farmacología , Antifúngicos/síntesis química , Arthrodermataceae/fisiología , Técnicas de Química Sintética , Griseofulvina/síntesis química , Humanos , Itraconazol/síntesis química , Fragmentos de Péptidos/síntesis química
13.
Mycoses ; 63(9): 979-992, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32628303

RESUMEN

BACKGROUND: Dermatophytes belonging to the Trichophyton genus are important human pathogens, but they have developed resistance to griseofulvin, the most common antifungal drug used to treat dermatophytosis. OBJECTIVE: This study was aimed to evaluate the antidermatophytic activity of synthetic peptides, as well as mechanisms of action and synergistic effect with griseofulvin. METHODS: Scanning electron microscopy (SEM), atomic force microscopy (AFM) and fluorescence microscopy (FM) were employed to understand the activity and the mechanism of action of peptides. RESULTS: Here we report that synthetic peptides at 50 µg/mL, a concentration 20-fold lower than griseofulvin, reduced the microconidia viability of T. mentagrophytes and T. rubrum by 100%, whereas griseofulvin decreased their viability by only 50% and 0%, respectively. The action mechanism of peptides involved cell wall damage, membrane pore formation and loss of cytoplasmic content. Peptides also induced overproduction of reactive oxygen species (ROS) and enhanced the activity of griseofulvin 10-fold against both fungi, suggesting synergistic effects, and eliminated the toxicity of this drug to human erythrocytes. Docking analysis revealed ionic and hydrophobic interactions between peptides and griseofulvin, which may explain the decline of griseofulvin toxicity when mixed with peptides. CONCLUSION: Therefore, our results strongly suggest six peptides with high potential to be employed alone as new drugs or as adjuvants to enhance the activity and decrease the toxicity of griseofulvin.


Asunto(s)
Antifúngicos/farmacología , Griseofulvina/farmacología , Péptidos/síntesis química , Péptidos/farmacología , Esporas Fúngicas/efectos de los fármacos , Trichophyton/efectos de los fármacos , Descubrimiento de Drogas , Farmacorresistencia Fúngica , Sinergismo Farmacológico , Humanos , Pruebas de Sensibilidad Microbiana
14.
Biochimie ; 175: 132-145, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32534825

RESUMEN

The emergence of antibiotic-resistant microbes has stimulated research worldwide seeking new biologically active molecules. In this respect, synthetic antimicrobial peptides (SAMPs) have been suggested to overcome this problem. Although there are some online servers that provide putative SAMPs from protein sequences, the choice of the best peptide sequences for further analysis is still difficult. Therefore, the goal of this paper is not to launch a new tool but to provide a friendly workflow to characterize and predict potential SAMPs by employing existing tools. Using this proposed workflow, two peptides (PepGAT and PepKAA) were obtained and extensively characterized. These peptides damaged microbial membranes and cell walls, and induced overproduction of reactive oxygen species (ROS). Both peptides were found to assume random coil secondary structure in aqueous solution, organic solvent, and upon binding to negatively charged lipid systems. Peptides were also able to degrade formed biofilms but not to prevent biofilm formation. PepGAT was not resistant to proteolysis, whereas PepKAA was resistant to pepsin but not to pancreatin. Furthermore, both presented no hemolytic activity against red blood cells, even at a 10-fold higher concentration than the antimicrobial concentration. The pipeline proposed here is an easy way to design new SAMPs for application as alternatives to develop new drugs against human pathogenic microorganisms.


Asunto(s)
Antiinfecciosos , Hongos/crecimiento & desarrollo , Bacterias Grampositivas/crecimiento & desarrollo , Proteínas Citotóxicas Formadoras de Poros , Especies Reactivas de Oxígeno/metabolismo , Animales , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Proteínas Citotóxicas Formadoras de Poros/síntesis química , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/farmacología , Estructura Secundaria de Proteína , Conejos
15.
Food Chem ; 307: 125574, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31648178

RESUMEN

This article reports the characterization and evaluation of the biotechnological potential of a cysteine protease purified from Calotropis procera (CpCP3). This enzyme was highly stable to different metal ions and was able to hydrolyze κ-casein similarly to bovine chymosin. Atomic force microscopy showed that the process of casein micelle aggregation induced by CpCP3 was similar to that caused by chymosin. The cheeses made using CpCP3 showed higher moisture content than those made with chymosin, but protein, fat, and ash were similar. The sensory analysis showed that cheeses made with CpCP3 had high acceptance index (>80%). In silico analysis predicted the presence of only two short allergenic peptides on the surface of CpCP3, which was highly susceptible to digestive enzymes and did not alter zebrafish embryos' morphology and development. Moreover, recombinant CpCP3 was expressed in Escherichia coli. All results support the biotechnological potential of CpCP3 as an alternative enzyme to chymosin.


Asunto(s)
Calotropis/enzimología , Caseínas/metabolismo , Queso , Proteasas de Cisteína/metabolismo , Animales , Bovinos , Quimosina/metabolismo , Hidrólisis , Látex/metabolismo , Proteínas de Plantas/metabolismo
16.
Int Immunopharmacol ; 31: 233-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26773770

RESUMEN

The immunomodulatory properties of mannose-binding lectins ConBr (Canavalia brasiliensis) and CFL (Cratylia argentea) were investigated comparatively in a model of Salmonella infection. The lectins were intraperitoneally (i.p.) administered to mice daily for three days before the bacterial challenge with Salmonella enterica Ser. Typhimurium (0.2 mL i.p.; 10(7) CFU/mL). In vivo assays have shown that both lectins induced a significant leukocyte infiltration into the peritoneal cavity of uninfected mice, which was higher in the CFL group 3 days post-infection. Total and differential cell counts in the bloodstreams have shown uninfected animals pretreated with ConBr and CFL exhibited accentuated lymphopenia. Conversely, there was an increasing population of lymphocytes following 3 days post-infection in mice pretreated with both lectins. In addition, the bacterial burden was significantly reduced into the peritoneal cavity, bloodstreams, spleen and the liver in these mice. The lectins did not induce the release of pro- or anti-inflammatory cytokines into the peritoneal fluid of uninfected animals. However, following infection, the release of TNF-α and IL-10 in the peritoneal fluid were down-regulated in mice pretreated with both lectins whereas IL-1 was only reduced in mice pretreated with ConBr. Uninfected animals pretreated with CFL exhibited high nitric oxide (NO) content in the peritoneal fluid, which was decreased after infection in comparison to ConBr group. The lectins did not alter the serum levels of NO in uninfected mice but treatments with ConBr significantly reduced the NO content in infected animals in comparison to CFL group 24h after the bacterial challenge. Survival experiments have shown survival rates ranging from 70% to 100% in mice that received CFL or ConBr. On the other hand, untreated mice (PBS group) died 1-6 days after infection. We conclude that ConBr and CFL are prospective phytotherapeutics capable of modulate the cascade of pro-inflammatory plus regulatory cytokines and nitric oxide release derived from systemic infections.


Asunto(s)
Canavalia/inmunología , Factores Inmunológicos/uso terapéutico , Leucocitos/efectos de los fármacos , Lectinas de Unión a Manosa/uso terapéutico , Infecciones por Salmonella/tratamiento farmacológico , Salmonella typhi/inmunología , Animales , Movimiento Celular/efectos de los fármacos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Mediadores de Inflamación/metabolismo , Inyecciones Intraperitoneales , Leucocitos/inmunología , Leucocitos/microbiología , Lectinas de Unión a Manosa/inmunología , Ratones , Óxido Nítrico/metabolismo , Infecciones por Salmonella/inmunología
17.
Naunyn Schmiedebergs Arch Pharmacol ; 385(5): 455-63, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22315016

RESUMEN

The proteins derived from the latex (LP) of Calotropis procera are well known for their anti-inflammatory property. In view of their protective effect reported in the sepsis model, they were evaluated for their efficacy in maintaining coagulation homeostasis in sepsis. Intraperitoneal injection of LP markedly reduced the procoagulation and thrombocytopenia observed in mice infected with Salmonella; while in normal mice, LP produced a procoagulant effect. In order to understand its mechanism of action, the LP was subjected to ion-exchange chromatography, and the three subfractions (LPPI, LPPII, and LPPIII) thus obtained were tested for their proteolytic effect and thrombin- and plasmin-like activities in vitro. Of the three subfractions tested, LPPII and LPPIII exhibited proteolytic effect on azocasein and exhibited procoagulant effect on human plasma in a concentration-dependent manner. Like trypsin and plasmin, these subfractions produced both fibrinogenolytic and fibrinolytic effects that were mediated through the hydrolysis of the Aα, Bß, and γ chains of fibrinogen and α-polymer and γ-dimer of fibrin clot, respectively. This study shows that the cysteine proteases present in the latex of C. procera exhibit thrombin- and plasmin-like activities and suggests that these proteins have therapeutic potential in various conditions associated with coagulation abnormalities.


Asunto(s)
Calotropis , Proteasas de Cisteína/farmacología , Proteínas de Plantas/farmacología , Infecciones por Salmonella/sangre , Sepsis/sangre , Animales , Coagulación Sanguínea/efectos de los fármacos , Proteasas de Cisteína/aislamiento & purificación , Fibrinógeno/metabolismo , Hemostasis/efectos de los fármacos , Humanos , Látex/química , Masculino , Ratones , Tiempo de Tromboplastina Parcial , Proteínas de Plantas/aislamiento & purificación , Recuento de Plaquetas , Tiempo de Protrombina , Salmonella typhimurium
18.
J Ethnopharmacol ; 129(3): 327-34, 2010 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-20371281

RESUMEN

AIM OF THE STUDY: The latex of Calotropis procera has been used in traditional medicine to treat different inflammatory diseases. The anti-inflammatory activity of latex proteins (LP) has been well documented using different inflammatory models. In this work the anti-inflammatory protein fraction was evaluated in a true inflammatory process by inducing a lethal experimental infection in the murine model caused by Salmonella enterica Subsp. enterica serovar Typhimurium. MATERIALS AND METHODS: Experimental Swiss mice were given 0.2 ml of LP (30 or 60 mg/kg) by the intraperitoneal route 24 h before or after lethal challenge (0.2 ml) containing 10(6) CFU/ml of Salmonella Typhimurium using the same route of administration. RESULTS: All the control animals succumbed to infection within 6 days. When given before bacterial inoculums LP prevented the death of mice, which remained in observation until day 28. Even, LP-treated animals exhibited only discrete signs of infection which disappeared latter. LP fraction was also protective when given orally or by subcutaneous route. Histopathological examination revealed that necrosis and inflammatory infiltrates were similar in both the experimental and control groups on days 1 and 5 after infection. LP activity did not clear Salmonella Typhimurium, which was still present in the spleen at approximately 10(4) cells/g of organ 28 days after challenge. However, no bacteria were detected in the liver at this stage. LP did not inhibit bacterial growth in culture medium at all. In the early stages of infection bacteria population was similar in organs and in the peritoneal fluid but drastically reduced in blood. Titration of TNF-alpha in serum revealed no differences between experimental and control groups on days 1 and 5 days after infection while IL-12 was only discretely diminished in serum of experimental animals on day 5. Moreover, cultured macrophages treated with LP and stimulated by LPS released significantly less IL-1beta. CONCLUSIONS: LP-treated mice did not succumb to septic shock when submitted to a lethal infection. LP did not exhibit in vitro bactericidal activity. It is thought that protection of LP-treated mice against Salmonella Typhimurium possibly involves down-regulation of pro-inflammatory cytokines (other than TNF-alpha). LP inhibited IL-1beta release in cultured macrophages and discretely reduced IL-12 in serum of animals given LP. Results reported here support the folk use of latex to treat skin infections by topic application.


Asunto(s)
Antibacterianos/uso terapéutico , Calotropis/química , Proteínas de Plantas/uso terapéutico , Infecciones por Salmonella/prevención & control , Salmonella typhimurium/efectos de los fármacos , Choque Séptico/prevención & control , Animales , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Células Cultivadas , Recuento de Colonia Microbiana , Citocinas/inmunología , Modelos Animales de Enfermedad , Látex/química , Hígado/efectos de los fármacos , Hígado/patología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/inmunología , Masculino , Ratones , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/farmacología , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/patología , Salmonella typhimurium/patogenicidad , Choque Séptico/inmunología , Choque Séptico/microbiología , Choque Séptico/patología , Bazo/efectos de los fármacos , Bazo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...