Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Mol Biosci ; 9: 831823, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480885

RESUMEN

The venom of the "armed" spider Phoneutria nigriventer comprises several potent toxins. One of the most toxic components from this venom is the neurotoxin PnTx2-6 (LD50 = ∼ 0.7 µg/mouse, 48 residues, five disulfide bridges, MW = 5,289.31 Da), which slows down the inactivation of various Na+ channels. In mice and rats, this toxin causes priapism, an involuntary and painful erection, similar to what is observed in humans bitten by P. nigriventer. While not completely elucidated, it is clear that PnTx2-6 potentiates erectile function via NO/cGMP signaling, but it has many off-target effects. Seeking to obtain a simpler and less toxic molecule able to retain the pharmacological properties of this toxin, we designed and synthesized the peptide PnPP-19 (19 residues, MW = 2,485.6 Da), representing a discontinuous epitope of PnTx2-6. This synthetic peptide also potentiates erectile function via NO/cGMP, but it does not target Na+ channels, and therefore, it displays nontoxic properties in animals even at high doses. PnPP-19 effectively potentiates erectile function not only after subcutaneous or intravenous administration but also following topical application. Surprisingly, PnPP-19 showed central and peripheral antinociceptive activity involving the opioid and cannabinoid systems, suggesting applicability in nociception. Furthermore, considering that PnPP-19 increases NO availability in the corpus cavernosum, this peptide was also tested in a model of induced intraocular hypertension, characterized by low NO levels, and it showed promising results by decreasing the intraocular pressure which prevents retinal damage. Herein, we discuss how was engineered this smaller active non-toxic peptide with promising results in the treatment of erectile dysfunction, nociception, and glaucoma from the noxious PnTx2-6, as well as the pitfalls of this ongoing journey.

2.
Nitric Oxide ; 113-114: 23-30, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915274

RESUMEN

PnPP-19 peptide has a primary sequence design based on molecular modeling studies of PnTx2-6 toxin. It comprises the amino acid residues that are potentially significant for the pharmacological action of PnTx2-6. Ex vivo and in vivo experiments in normotensive, hypertensive, or diabetic murine models have shown a significant improvement in penile erection after administration of PnPP-19. Given the potential use of PnPP-19 in pharmaceutical formulations to treat erectile dysfunction and the lack of information concerning its mode of action, the present work investigates its activities on the nitrergic system. PnPP-19 induced a significant increase in nitric oxide (NO) and cGMP levels in corpus cavernosum (cc). These effects were inhibited by l-NAME, a non-selective inhibitor of nitric oxide synthase (NOS); were partially inhibited by 7- Nitroindazole, a selective inhibitor of neuronal NOS (nNOS); and were abolished by L-NIL, a selective inhibitor of inducible NOS (iNOS). This potentiating effect was not affected by atropine. PnPP-19 also led to changes in mRNA levels, protein expression and phosphorylation at specific sites of NOS, in cc. Assays using cavernous tissue from knockout mice to endothelial NOS (eNOS), nNOS or iNOS showed that PnPP-19 potentiates relaxation only in eNOS-knockout mice, which suggests an essential role for nNOS. Surprisingly, iNOS enhanced the potentiation of erectile function evoked by PnPP-19. Our results demonstrate that this new synthetic peptide potentiates erectile function via nitric oxide activation and reinforce its role as a new pharmacological tool for the treatment of erectile dysfunction.


Asunto(s)
Disfunción Eréctil/tratamiento farmacológico , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Péptidos/farmacología , Animales , Biología Computacional , Disfunción Eréctil/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo I/deficiencia , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo II/deficiencia , Óxido Nítrico Sintasa de Tipo II/genética , Péptidos/síntesis química , Péptidos/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley
3.
Toxicology ; 454: 152737, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33631299

RESUMEN

Ureases are microbial virulence factors either because of the enzymatic release of ammonia or due to many other non-enzymatic effects. Here we studied two neurotoxic urease isoforms, Canatoxin (CNTX) and Jack Bean Urease (JBU), produced by the plant Canavalia ensiformis, whose mechanisms of action remain elusive. The neurotoxins provoke convulsions in rodents (LD50 ∼2 mg/kg) and stimulate exocytosis in cell models, affecting intracellular calcium levels. Here, electrophysiological and brain imaging techniques were applied to elucidate their mode of action. While systemic administration of the toxins causes tonic-clonic seizures in rodents, JBU injected into rat hippocampus induced spike-wave discharges similar to absence-like seizures. JBU reduced the amplitude of compound action potential from mouse sciatic nerve in a tetrodotoxin-insensitive manner. Hippocampal slices from CNTX-injected animals or slices treated in vitro with JBU failed to induce long term potentiation upon tetanic stimulation. Rat cortical synaptosomes treated with JBU released L-glutamate. JBU increased the intracellular calcium levels and spontaneous firing rate in rat hippocampus neurons. MicroPET scans of CNTX-injected rats revealed increased [18]Fluoro-deoxyglucose uptake in epileptogenesis-related areas like hippocampus and thalamus. Curiously, CNTX did not affect voltage-gated sodium, calcium or potassium channels currents, neither did it interfere on cholinergic receptors, suggesting an indirect mode of action that could be related to the ureases' membrane-disturbing properties. Understanding the neurotoxic mode of action of C. ensiformis ureases could help to unveil the so far underappreciated relevance of these toxins in diseases caused by urease-producing microorganisms, in which the human central nervous system is affected.


Asunto(s)
Canavalia/química , Síndromes de Neurotoxicidad/etiología , Proteínas de Plantas/toxicidad , Toxinas Biológicas/toxicidad , Ureasa/toxicidad , Animales , Convulsivantes/aislamiento & purificación , Convulsivantes/toxicidad , Femenino , Masculino , Ratones , Sistema Nervioso/efectos de los fármacos , Sistema Nervioso/patología , Síndromes de Neurotoxicidad/fisiopatología , Proteínas de Plantas/aislamiento & purificación , Ratas , Ratas Wistar , Toxinas Biológicas/aislamiento & purificación , Ureasa/aislamiento & purificación , Xenopus laevis
4.
Biomed Pharmacother ; 133: 110948, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33249278

RESUMEN

Retinal ischemia, one of the most common cause of visual loss, is associated with blood flow inadequacy and subsequent tissue injury. In this setting, some treatments that can counteract glutamate increase, arouse interest in ischemic pathogenesis. Ketamine, a potent N-methyl-d-aspartate (NMDA) receptor antagonist, provides a neuroprotective pathway via decreasing the excitotoxicity triggered by excess glutamatergic. Thus, the goal of this study was to evaluate the safety of intravitreal use of ketamine and their potential protective effects on retinal cells in retinal ischemia/reperfusion model. Initially, ketamine toxicity was evaluated by cytotoxicity assay and Hen's egg chorioallantoic membrane (HET-CAM) method. Afterward, some ketamine concentrations were tested in rat's eyes to verify the safety of the intravitreal use. To investigate the neuroprotective effect on retinal, a single intravitreal injection of ketamine in concentrations of 0.059 mmol.L-1 and 0.118 mmol.L-1 was performed one day before the retinal injury by ischemia/reperfusion model. After 7 and 15 days, the retina activity was evaluated by electroretinogram (ERG) records and, lastly, by morphological analyzes. Cytotoxicity assay reveals that the maximum ketamine concentration that could reach retinal pigmented epithelium cells is 0.353 mmol.L-1. HET-CAM assay showed that concentrations above 0.237 mmol.L-1 are irritants to the eye. Thus, Ketamine in concentrations of 0.0237 mmol.L-1, 0.118 mmol.L-1, and 0.059 mmol.L-1 were selected for in vivo toxicity test. ERG records reveal a tendency of b-wave amplitude to decrease as the luminous intensity increased, in the group receiving ketamine at 0.237 mmol.L-1. Therefore, ketamine in concentrations at 0.059 mmol.L-1 and 0.118 mmol.L-1 were chosen for the following tests. In the ischemia retinal degeneration model, pretreatment with ketamine was capable to promote a recovery of retinal electrophysiological function minimizing the ischemic effects. In histological analysis, the groups that received intravitreal ketamine showed a number of retinal cells significantly higher than the vehicle group. In TUNEL assay a reduction on TUNEL-positive cells was observed in all the layers for both concentrations which allow to affirm that ketamine contributes to reducing cell death in the retina. Transmission electron microscopy (TEM) reaffirms this finding. Ketamine intravitreal pretreatment showed reduced ultrastructural changes. Our findings demonstrate that ketamine is safe for intravitreal use in doses up to 0.118 mmol.L-1. They seem to be particularly efficient to protect the retina from ischemic injury.


Asunto(s)
Antagonistas de Aminoácidos Excitadores/administración & dosificación , Isquemia/prevención & control , Ketamina/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Degeneración Retiniana/prevención & control , Neuronas Retinianas/efectos de los fármacos , Vasos Retinianos/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Embrión de Pollo , Modelos Animales de Enfermedad , Inyecciones Intravítreas , Isquemia/metabolismo , Isquemia/patología , Masculino , Ratas Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Neuronas Retinianas/metabolismo , Neuronas Retinianas/ultraestructura , Vasos Retinianos/metabolismo , Vasos Retinianos/patología
5.
Neuropeptides ; 85: 102113, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33370615

RESUMEN

Neurovespina is a synthetic peptide modified from Occidentalin-1202, a nine amino acid residue peptide isolated from the venom of the social wasp Polybia occidentalis. Previous studies showed that this peptide has a neuroprotective effect on the central nervous system, but its action on the eye has not been explored. So, the objective of this work was to investigate the neuroprotective effect of Neurovespina on the retina and its angiogenic potential in the chicken chorioallantoic membrane (CAM). Retinal ischemia was induced in rats by acute elevation of intraocular pressure (IOP). Electroretinography (ERG) measurements, histopathological and immunohistochemical analysis, and transmission electronic microscopy (TEM) records were performed to check the neuroprotection effect of Neurovespina in the retina of the animals. The angiogenic activity of the peptide was investigated by CAM assay. The results showed that Neurovespina was able to reduce the effects induced by ischemic injury, preventing the reduction of a- and b-waves in the scotopic ERG. Histopathological and immunohistochemistry assays showed that Neurovespina, mainly at 60 µg/ml, protected all layers of the retina. The CAM assay revealed that the peptide promoted the reduction of CAM vessels. So, Neurovespina was able to protect retinal cells from ischemic insult and has an antiangiogenic effect, which can be considered as a promising neuroprotective agent for intravitreal application.


Asunto(s)
Isquemia/complicaciones , Fármacos Neuroprotectores/administración & dosificación , Enfermedades de la Retina/tratamiento farmacológico , Enfermedades de la Retina/patología , Ponzoñas/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Masculino , Neovascularización Patológica/tratamiento farmacológico , Ratas Wistar , Enfermedades de la Retina/etiología , Enfermedades de la Retina/fisiopatología , Avispas
6.
Doc Ophthalmol ; 142(1): 75-85, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32623534

RESUMEN

PURPOSE: To verify the safety of different doses of intravitreal metoprolol tartrate (MT) after intravitreal injection in rabbit eyes. METHODS: Animals were randomly assigned into 2 groups: group I received 50 µg of MT and group II 100 µg of MT. A volume of 0.05 mL of the drug solution was administered through an intravitreal injection, while the control eyes received an equal volume of saline solution. Safety was assessed by clinical observation, electroretinography (ERG) and histological evaluation. RESULTS: No evidence of clinical toxicity was observed. ERG waveforms from the MT treated eyes were similar to those recorded from the control eyes in dark-adapted state, amplitude and the implicit time are similar between the groups in light-adapted state, and their retinas had no signs of toxicity by histological evaluation 7 days after intravitreal injection. CONCLUSIONS: The intravitreal use of metoprolol at 50 and 100 µg dosages does not cause short-term retinal toxicity in rabbits.


Asunto(s)
Electrorretinografía , Metoprolol , Animales , Conejos , Inyecciones Intravítreas , Metoprolol/toxicidad , Retina , Cuerpo Vítreo
7.
Artículo en Inglés | MEDLINE | ID: mdl-33014024

RESUMEN

BACKGROUND: PnPa11 and PnPa13 are synthetic peptides derived from Phoneutria nigriventer spider venom, which display antinociceptive and neuroprotective properties. In this work, we evaluated the safety of intravitreal use and the neuroprotective effect of these peptides. METHODS: The cytotoxicity and the antiangiogenic activity of these peptides were evaluated by the sulforhodamine-B method and chicken chorioallantoic membrane (CAM) assay, respectively. The in vivo safety was analyzed in Wistar rats that were intravitreally injected with different doses (0.50; 1.25; 2.50; 3.75 and 5.00 µg/mL) of these peptides (right eye, n = 6). The retinal function was assessed by electroretinography exams (ERG), intraocular pressure (IOP), and histological analyzes. In order to investigate the neuroprotective effect, Wistar rats received intravitreal injections (right eye, n = 6) of peptides at 1.25 µg/mL and then were exposed to blue LED light. In addition, the visual function and the retinal microstructure were verified. RESULTS: Cytotoxicity analyses demonstrated that the peptides did not present any toxicity over ARPE-19 (adult retinal pigmented epithelial) cell line and the antiangiogenic study highlighted that the peptides promoted the reduction of blood vessels. The intravitreal injection did not cause major changes, neither induced any irreversible damage. In the retinal degeneration assay, the ERG records demonstrated that the prior treatment with PnPa11 and PnPa13 protected the retina from damage. Morphological analyses confirmed the ERG findings. Immunoblotting analyses revealed that PnPa11 increased Erk1/2, NR2A, and NR2B retinal expression after the light stress model, but did not cause Akt1 activation, while PnPa13 prevented Erk1/2 and Akt1 dephosphorylation. CONCLUSIONS: The intraocular administration of these peptides was well tolerated and presented protective activity against retinal degeneration, suggesting the potential use of these peptides as neuroprotectors in the ophthalmological field.

8.
Transl Vis Sci Technol ; 9(8): 33, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32855879

RESUMEN

Purpose: Evaluation of PnPP-19 safety and efficacy in reducing the intraocular pressure (IOP) of animals with healthy (normotensive) and ocular hypertensive eyes. PnPP-19 is a synthetic peptide designed from Phoneutria nigriventer spider toxin PnTx2-6. Methods: Toxicity tests used chicken chorioallantoic membranes. Electroretinograms (ERGs) were recorded before and after administration of different doses of PnPP-19 on the eyes of Wistar rats. Histological sections of corneas and retinas were prepared. The efficacy of PnPP-19 in reducing IOP was evaluated for normotensive and ocular hypertensive animals using a tonometer. Ocular hypertension was induced in the right eye through injection of hyaluronic acid (HA) into the anterior chamber. ERG was recorded before and after glaucoma induction. The eyes were enucleated, and the corneas and retinas were histologically evaluated. Results: PnPP-19 showed no toxicity, being safe for ocular application. A single topical instillation of one eye drop of the peptide solution was able to reduce IOP, both in healthy and ocular hypertensive rats, for 24 hours, without eliciting any apparent toxicity. PnPP-19 is a nitric oxide inducer and the results suggest that it may improve the conventional outflow of aqueous humor (AH), preventing the progression of optic nerve degeneration. Conclusions: PnPP-19 has great potential to emerge as a promising drug for the treatment of ocular hypertension. Translational Relevance: We regard our findings as exciting progress in translational glaucoma research, combining drug discovery, natural product research, and pharmacology, which may contribute to the establishment of new therapies for the treatment of this disease.


Asunto(s)
Glaucoma , Óxido Nítrico , Animales , Glaucoma/tratamiento farmacológico , Presión Intraocular , Péptidos , Ratas , Ratas Wistar
9.
Burns ; 46(4): 928-936, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31722838

RESUMEN

INTRODUCTION: Chemical ocular burns are among the most frequently eye-related injuries, which require immediate and intensive evaluation and care since they may lead to potential complications such as superinfection, corneal perforation, and blindness.Vasconcellea cundinamarcensis, a species from Caricaceae family, contains highly active proteolytic enzymes in its latex that show healing activity in animal models bearing lesions of different etiologies. METHODS: We evaluate the ocular toxicity of the proteolytic fraction from V. cundinamarcensis (P1G10) by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and Hen's Egg Test-Chorioallantoic Membrane test. The corneal healing property of P1G10 was studied by the ethanol-chemical burn in the rabbit's eyes. RESULTS: P1G10 is safe for ocular administration, except when administrated at 10µg/mL. P1G10 at 1µg/mL accelerates the corneal re-epithelization achieving complete wound closure after 72h of chemical burn. Also, P1G10 modulated the inflammatory response and controlled the arrangement of collagen fibers in the stroma, demonstrating its potential corneal healing properties. CONCLUSIONS: Our work was the first one to evaluate the ophthalmic application of P1G10. Here we demonstrated that P1G10 is suitable for ocular administration and it has a promising corneal healing activity which may emerge as a new pharmacological tool to the development of a new drug for ocular surface chemical injuries in the future.


Asunto(s)
Quemaduras Químicas/patología , Caricaceae/enzimología , Córnea/efectos de los fármacos , Lesiones de la Cornea/patología , Quemaduras Oculares/patología , Fibroblastos/efectos de los fármacos , Péptido Hidrolasas/farmacología , Repitelización/efectos de los fármacos , Administración Oftálmica , Animales , Quemaduras Químicas/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colágeno/efectos de los fármacos , Córnea/citología , Córnea/metabolismo , Córnea/patología , Lesiones de la Cornea/metabolismo , Relación Dosis-Respuesta a Droga , Etanol/toxicidad , Quemaduras Oculares/metabolismo , Humanos , Técnicas In Vitro , Inflamación , Látex/química , Conejos , Solventes/toxicidad , Cicatrización de Heridas/efectos de los fármacos
10.
J. venom. anim. toxins incl. trop. dis ; 26: e20200031, 2020. graf, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1135135

RESUMEN

PnPa11 and PnPa13 are synthetic peptides derived from Phoneutria nigriventer spider venom, which display antinociceptive and neuroprotective properties. In this work, we evaluated the safety of intravitreal use and the neuroprotective effect of these peptides. Methods: The cytotoxicity and the antiangiogenic activity of these peptides were evaluated by the sulforhodamine-B method and chicken chorioallantoic membrane (CAM) assay, respectively. The in vivo safety was analyzed in Wistar rats that were intravitreally injected with different doses (0.50; 1.25; 2.50; 3.75 and 5.00 µg/mL) of these peptides (right eye, n = 6). The retinal function was assessed by electroretinography exams (ERG), intraocular pressure (IOP), and histological analyzes. In order to investigate the neuroprotective effect, Wistar rats received intravitreal injections (right eye, n = 6) of peptides at 1.25 µg/mL and then were exposed to blue LED light. In addition, the visual function and the retinal microstructure were verified. Results: Cytotoxicity analyses demonstrated that the peptides did not present any toxicity over ARPE-19 (adult retinal pigmented epithelial) cell line and the antiangiogenic study highlighted that the peptides promoted the reduction of blood vessels. The intravitreal injection did not cause major changes, neither induced any irreversible damage. In the retinal degeneration assay, the ERG records demonstrated that the prior treatment with PnPa11 and PnPa13 protected the retina from damage. Morphological analyses confirmed the ERG findings. Immunoblotting analyses revealed that PnPa11 increased Erk1/2, NR2A, and NR2B retinal expression after the light stress model, but did not cause Akt1 activation, while PnPa13 prevented Erk1/2 and Akt1 dephosphorylation. Conclusions: The intraocular administration of these peptides was well tolerated and presented protective activity against retinal degeneration, suggesting the potential use of these peptides as neuroprotectors in the ophthalmological field.(AU)


Asunto(s)
Animales , Péptidos , Venenos de Araña , Inyecciones Intravítreas , Arañas , Analgésicos
11.
Int J Pharm ; 568: 118466, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31254623

RESUMEN

Some recent studies have shown that pirfenidone (PFD) has favorable results in the healing process of the cornea. However, PFD in solution exhibits short half-life after topical application, and in this context, a liquid crystal nanoparticle system containing PFD (PFD-LCNPs) was developed. The nanoparticles were characterized by transmission electron microscopy, atomic force microscopy, small angle X-ray diffraction and polarized light microscopy. The PFD-LCNPs had particle size and zeta potential of 247.3 nm and -33.60 mV (stores at 4 °C), respectively, and 257.5 nm and -46.00 mV (stored at 25 °C), respectively. The pH of the formulation was 6.9 and the encapsulation efficiency was 35.9%. The in vitro release profiles indicated that PFD sustained release from PFD-LCNPs for up to 12 h. In vitro study of ocular irritation (HET-CAM test) concluded that components of the formulation are well tolerated for ocular administration. Corneal re-epithelialization time after chemical burning was significantly reduced in rabbits treated with PFD-loaded LCNPs when compared to the group treated with a vehicle. In addition, the anti-inflammatory action of pirfenidone was observed by reducing myeloperoxidase activity (MPO) and inflammatory cells in the histology of the tissues of animals treated with PFD-LCNPs. These findings indicated that the PFD-LCNPs might have the potential for effective ocular drug delivery.


Asunto(s)
Analgésicos/administración & dosificación , Antiinflamatorios/administración & dosificación , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Oculares/tratamiento farmacológico , Cristales Líquidos , Nanopartículas/administración & dosificación , Piridonas/administración & dosificación , Administración Oftálmica , Analgésicos/farmacocinética , Animales , Antiinflamatorios/farmacocinética , Quemaduras Químicas/metabolismo , Quemaduras Químicas/patología , Embrión de Pollo , Membrana Corioalantoides/efectos de los fármacos , Córnea/efectos de los fármacos , Córnea/metabolismo , Córnea/patología , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Estabilidad de Medicamentos , Quemaduras Oculares/inducido químicamente , Quemaduras Oculares/metabolismo , Quemaduras Oculares/patología , Femenino , Tamaño de la Partícula , Peroxidasa/metabolismo , Piridonas/farmacocinética , Conejos
12.
Toxins (Basel) ; 11(4)2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30987317

RESUMEN

Bacterial keratitis is an ocular infection that can lead to severe visual disability. Staphylococcus aureus is a major pathogen of the eye. We recently demonstrated the strong antimicrobial activity of LyeTxI-b, a synthetic peptide derived from a Lycosa erithrognatha toxin. Herein, we evaluated a topical formulation (eye drops) containing LyeTxI-b to treat resistant bacterial keratitis. Keratitis was induced with intrastromal injection of 4 × 105 cells (4 µL) in New Zealand female white rabbits. Minimum inhibitory concentration (MIC) and biofilm viability were determined. LyeTxI-b ocular toxicity was evaluated through chorioallantoic membrane and Draize tests. One drop of the formulation (LyeTxI-b 28.9 µmol/L +0.5% CMC in 0.9% NaCl) was instilled into each eye four times a day, for a week. Slit-lamp biomicroscopy analysis, corneal histopathological studies and cellular infiltrate quantification through myeloperoxidase (MPO) and N-acetylglucosaminidase (NAG) detection were performed. LyeTxI-b was very effective in the treatment of keratitis, with no signs of ocular toxicity. Planktonic bacteria MIC was 3.6 µmol/L and LyeTxI-b treatment reduced biofilm viability in 90%. LyeTxI-b eliminated bacteria and reduced inflammatory cellular activity in the eyes. Healthy and treated animals showed similar NAG and MPO levels. LyeTxI-b is a potent new drug to treat resistant bacterial keratitis, showing effective antimicrobial and anti-inflammatory activity.


Asunto(s)
Antibacterianos/administración & dosificación , Péptidos Catiónicos Antimicrobianos/química , Proteínas de Artrópodos/administración & dosificación , Infecciones Bacterianas del Ojo/tratamiento farmacológico , Queratitis/tratamiento farmacológico , Soluciones Oftálmicas/administración & dosificación , Venenos de Araña/administración & dosificación , Infecciones Estafilocócicas/tratamiento farmacológico , Administración Tópica , Animales , Antibacterianos/toxicidad , Proteínas de Artrópodos/toxicidad , Pollos , Membrana Corioalantoides/efectos de los fármacos , Ojo/efectos de los fármacos , Ojo/inmunología , Ojo/patología , Femenino , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Soluciones Oftálmicas/toxicidad , Conejos , Venenos de Araña/toxicidad , Staphylococcus aureus
13.
Artículo en Inglés | MEDLINE | ID: mdl-30479614

RESUMEN

BACKGROUND: The great diversity of molecules found in spider venoms include amino acids, polyamines, proteins and peptides, among others. Some of these compounds can interact with different neuronal receptors and ion channels including those present in the ocular system. To study potential toxicity and safety of intravitreal injection in rabbits of LyeTx I b, a synthetic peptide derived from the toxin LyeTx I found in venom from the spider Lycosa eritrognatha and to evaluate the angiogenic activity on a CAM model. METHODS: ARPE-19 cells were treated with LyeTx I b (0.36; 0.54; 0.72; 2.89; 4.34 or 9.06 µM). In this study, New Zealand rabbits were used. LyeTx I b (2.89 µM) labeled with FITC dissolved in PBS, or only PBS, were injected into vitreous humor. Electroretinogram (ERG) was recorded 1 day before injection and at 7, 14 and 28 days post-injection. Clinical examination of the retina was conducted through tonometer and eye fundus after ERG. Eyes were enucleated and retinas were prepared for histology in order to assess retinal structure. CAMs were exposed to LyeTx I b (0.54; 0.72; 2.17 or 2.89 µM). RESULTS: ARPE-19 cells exposed to LyeTx I b showed cell viability at the same levels of the control. The fluorescence of LyeTx I b labeled with FITC indicated its retinal localization. Our findings indicate ERG responses from rats injected in the eye with LyeTx I b were very similar to the corresponding responses of those animals injected only with vehicle. Clinical examination found no alterations of intraocular pressure or retinal integrity. No histological damage in retinal layers was observed. CAM presented reduced neovascularization when exposed to LyeTx I b. CONCLUSIONS: Intravitreal injection of LyeTx I b is safe for use in the rabbit eye and prevents neovascularization in the CAM model, at Bevacizumab levels. These findings support intravitreal LyeTx I b as a good candidate to develop future alternative treatment for the retina in neovascularization diseases.

14.
Toxicon ; 150: 280-288, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29913196

RESUMEN

PhTx2 is the most toxic fraction from the venom of the spider Phoneutria nigriventer, being responsible to sodium entry into cortical synaptosomes, increasing the release of neurotransmitters, such as l-glutamate (L-Glu) and; acetylcholine. In this study, we investigated the action of a toxin purified from; PhTx2 fraction, called PnTx2-6 or δ-CNTX-Pn2a, on L-Glu release from rat; brain cortex synaptosomes, as well as its ability to induce blood-brain barrier permeability. PnTx2-6 increased L-Glu release from rat cortical brain synaptosomes in a time- and dose-dependent manner (EC50 = ∼20 nM; Tm = 16min), as measured by a fluorimetric method. The increase of L-Glu by PnTx2-6 was inhibited by tetrodotoxin. And partially inhibited by EGTA. Calcium channel blockers ω-conotoxin MVIIC (P/Q-types) and ω-conotoxin GVIA (N-type), were able to reduce the PnTx2-6-induced release of L-Glu, while nifedipine (L-type) did not show any inhibition. These findings suggest that thew release of L-Glu by PnTx2-6 is due its primary action on sodium channels, well-known to be target of this toxin. PnTx2-6 is able to potentiate penile erection and this effect may be related with the release of l-glutamate from the CNS, besides a local effect on corpus carvenosum, as previously shown by our group. If L-Glu release and penile erection potentiation are indeed correlated, then this toxin should be able to cross the blood brain barrier (BBB). Results by immunoblotting assays indicated a change in the expression of proteins associated with the paracellular and transcellular transport at the blood-brain barrier, suggesting a BBB dysfunction mediated by PnTx2-6. Therefore, PnTx2-6 may induce the release l-glutamate in the central nervous system, when injected peripherally.


Asunto(s)
Canales de Calcio/metabolismo , Ácido Glutámico/metabolismo , Péptidos/farmacología , Canales de Sodio/metabolismo , Venenos de Araña/química , Sinaptosomas/efectos de los fármacos , Animales , Barrera Hematoencefálica , Encéfalo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Venenos de Araña/farmacología , Arañas/fisiología , Sinaptosomas/metabolismo
15.
Curr Drug Deliv ; 15(7): 1064-1071, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29318970

RESUMEN

BACKGROUND: PnPP-19 is a 19-amino-acid synthetic peptide previously described as a novel drug for the treatment of erectile dysfunction. OBJECTIVE: The aim of this work was to evaluate the physicochemical properties of cationic transfersomes containing PnPP-19 and the skin permeation of free PnPP-19 and PnPP-19-loaded transfersomes. METHODS: Three different liposomal preparation methods were evaluated. Cationic transfersomes contained egg phosphatidyl choline: stearylamine (9:1 w/w) and Tween 20 (84.6:15.4 lipid:Tween, w/w). Lipid concentration varied from 20 to 40 mM. We evaluated the entrapment percentage, mean diameter, zeta potential and stability at 4 °C of the formulations. The skin permeation assays were performed with abdominal human skin using Franz diffusion cell with 3 cm2 diffusion area at 32 °C and a fluorescent derivative of the peptide, containing 5-TAMRA, bound to PnPP-19 C-terminal region, where an extra lysine was inserted. RESULTS: Our results showed variable entrapment efficiencies, from 6% to 30%, depending on the preparation method and the lipid concentration used. The reverse phase evaporation method using a total lipid concentration equal to 40 mM led to the best entrapment percentage (30.2 + 4.5%). Free PnPP-19 was able to permeate skin at a rate of 10.8 ng/cm2/h. However, PnPP-19 was specifically hydrolyzed by skin proteases, generating a fragment of 15 amino acid residues. Encapsulated PnPP-19 permeated the skin at a rate of 19.8 ng/cm2/h. CONCLUSION: The encapsulation of PnPP-19 in cationic transfersomes protected the peptide from degradation, favoring its topical administration.


Asunto(s)
Péptidos/administración & dosificación , Péptidos/química , Absorción Cutánea , Administración Cutánea , Adulto , Aminas/administración & dosificación , Aminas/química , Disfunción Eréctil/tratamiento farmacológico , Femenino , Humanos , Técnicas In Vitro , Liposomas , Masculino , Persona de Mediana Edad , Fosfatidilcolinas/administración & dosificación , Fosfatidilcolinas/química , Polisorbatos/administración & dosificación , Polisorbatos/química , Rodaminas/administración & dosificación , Rodaminas/química , Piel/metabolismo
16.
J. venom. anim. toxins incl. trop. dis ; 24: 31, 2018. graf, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-976025

RESUMEN

The great diversity of molecules found in spider venoms include amino acids, polyamines, proteins and peptides, among others. Some of these compounds can interact with different neuronal receptors and ion channels including those present in the ocular system. To study potential toxicity and safety of intravitreal injection in rabbits of LyeTx I b, a synthetic peptide derived from the toxin LyeTx I found in venom from the spider Lycosa eritrognatha and to evaluate the angiogenic activity on a CAM model. Methods: ARPE-19 cells were treated with LyeTx I b (0.36; 0.54; 0.72; 2.89; 4.34 or 9.06 µM). In this study, New Zealand rabbits were used. LyeTx I b (2.89 µM) labeled with FITC dissolved in PBS, or only PBS, were injected into vitreous humor. Electroretinogram (ERG) was recorded 1 day before injection and at 7,14 and 28 days post-injection. Clinical examination of the retina was conducted through tonometer and eye fundus after ERG. Eyes were enucleated and retinas were prepared for histology in order to assess retinal structure. CAMs were exposed to LyeTx I b (0.54; 0.72; 2.17 or 2.89 µM). Results: ARPE-19 cells exposed to LyeTx I b showed cell viability at the same levels of the control. The fluorescence of LyeTx I b labeled with FITC indicated its retinal localization. Our findings indicate ERG responses from rats injected in the eye with LyeTx I b were very similar to the corresponding responses of those animals injected only with vehicle. Clinical examination found no alterations of intraocular pressure or retinal integrity. No histological damage in retinal layers was observed. CAM presented reduced neovascularization when exposed to LyeTx I b. Conclusions: Intravitreal injection of LyeTx I b is safe for use in the rabbit eye and prevents neovascularization in the CAM model, at Bevacizumab levels. These findings support intravitreal LyeTx l b as a good candidate to develop future alternative treatment for the retina in neovascularization diseases.(AU)


Asunto(s)
Animales , Péptidos , Neovascularización Coroidal , Inyecciones Intravítreas
17.
J Urol ; 194(5): 1481-90, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26119670

RESUMEN

PURPOSE: We designed a peptide, PnPP-19, comprising the potential active core of the Phoneutria nigriventer native toxin PnTx2-6. We investigated its role on erectile function, and its toxicity and immunogenicity. MATERIALS AND METHODS: Erectile function was evaluated by the intracavernous pressure-to-mean arterial pressure ratio during electrical field stimulation on rat pelvic ganglia. Cavernous strips were contracted with phenylephrine and relaxation was induced by electrical field stimulation with or without PnPP-19 (10(-8) M). Activity on sodium channels was evaluated by electrophysiological screening of transfected channels on Xenopus oocytes and dorsal root ganglion cells. Antibodies were detected by indirect enzyme-linked immunosorbent assay in mice previously treated with the peptide. Histopathological studies were performed with mouse organs treated with different doses of PnPP-19. RESULTS: PnPP-19 was able to potentiate erection at 4 and 8 Hz in vivo and ex vivo. It showed no toxicity and low immunogenicity in mice, and did not affect sodium channels or rat hearts. PnPP-19 increased cyclic guanosine monophosphate levels at 8 Hz. This effect was inhibited by L-NAME (10(-4) M). Erectile function was partially inhibited by 7-nitroindazole (10(-5) M), a selective inhibitor of neuronal nitric oxide synthase. CONCLUSIONS: PnPP-19 potentiates erection in vivo and ex vivo via the nitric oxide/cyclic guanosine monophosphate pathway. It does not affect sodium channels or rat hearts and shows no toxicity and low immunogenicity. These findings make it a promising candidate as a novel drug in the therapy of erectile dysfunction.


Asunto(s)
GMP Cíclico/metabolismo , Disfunción Eréctil/tratamiento farmacológico , Neuropéptidos/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Erección Peniana/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Disfunción Eréctil/fisiopatología , Masculino , Ratones , Neurotoxinas , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley
18.
Toxicon ; 85: 5-16, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24751366

RESUMEN

Crotoxin (Crtx), the main toxin in the venom of Crotalus durissus terrificus snake, is a heterodimer with a basic subunit, CB, and an acidic subunit, CA. CB is a phospholipase A2 that depends on CA to specifically bind to the cell membrane. This toxin acts in the central nervous system (CNS) causing chronic seizure effects and other cytotoxic effects. Here, we report its action on glutamate release in rat cerebral cortex synaptosomes. Aiming at a better understanding of the mechanism of action of Crtx, calcium channel blockers were used and internalization studies were performed in cerebellar granule neurons. Our results show that Crtx induces calcium-dependent glutamate release via N and P/Q calcium channels. In addition, the CB subunit of Crtx is shown to be internalized. This internalization does not depend on the presence of CA subunit neither on the PLA2 activity of CB. A correlation between CB internalization and glutamate release remains to be established.


Asunto(s)
Agonistas de los Canales de Calcio/farmacología , Canales de Calcio Tipo N/metabolismo , Corteza Cerebral/efectos de los fármacos , Venenos de Crotálidos/química , Crotalus , Crotoxina/farmacología , Sinaptosomas/efectos de los fármacos , Animales , Agonistas de los Canales de Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo N/química , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/metabolismo , Venenos de Crotálidos/enzimología , Crotoxina/antagonistas & inhibidores , Crotoxina/metabolismo , Ácido Glutámico/metabolismo , Fosfolipasas A2 Grupo II/antagonistas & inhibidores , Fosfolipasas A2 Grupo II/metabolismo , Fosfolipasas A2 Grupo II/farmacología , Masculino , Proteínas del Tejido Nervioso/agonistas , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neurotoxinas/antagonistas & inhibidores , Neurotoxinas/metabolismo , Neurotoxinas/farmacología , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Subunidades de Proteína/farmacología , Transporte de Proteínas/efectos de los fármacos , Ratas Wistar , Proteínas de Reptiles/antagonistas & inhibidores , Proteínas de Reptiles/metabolismo , Proteínas de Reptiles/farmacología , Transmisión Sináptica/efectos de los fármacos , Sinaptosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...