Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Trans Biomed Eng ; PP2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376980

RESUMEN

OBJECTIVE: This work explores Hall effect sensing paired with a permanent magnet, in the context of pulmonary rehabilitation exercise training. METHODS: Experimental evaluation was performed considering as reference the gold-standard of respiratory monitoring, an airflow transducer, and performance was compared to another wearable device with analogous usability - a piezoelectric sensor. A total of 16 healthy participants performed 15 activities, representative of pulmonary rehabilitation exercises, simultaneously using all devices. Evaluation was performed based on detection of flow reversal events and key respiratory parameters. RESULTS: Overall, the proposed sensor outperformed the piezoelectric sensor with a mean ratio, precision, and recall of 0.97, 0.97, and 0.95, respectively, against 0.98, 0.90, and 0.88. Evaluation regarding the respiratory parameters indicates an adequate accuracy when it comes to breath cycle, inspiration, and expiration times, with mean relative errors around 4% for breath cycle and 8% for inspiration/expiration times, despite some variability. Bland-Altman analysis indicates no systematic biases. CONCLUSION: Characterization of the proposed sensor shows adequate monitoring capabilities for exercises that do not rely heavily on torso mobility, but may present a limitation when it comes to activities such as side stretches. SIGNIFICANCE: This work provides a comprehensive characterization of a magnetic field-based respiration sensor, including a discussion on its robustness to different algorithm thresholds. It proves the viability of the sensor in a range of exercises, expanding the applicability of Hall effect sensors as a feasible wearable approach to real-time respiratory monitoring.

2.
Sensors (Basel) ; 24(1)2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38203068

RESUMEN

Musculoskeletal conditions affect millions of people globally; however, conventional treatments pose challenges concerning price, accessibility, and convenience. Many telerehabilitation solutions offer an engaging alternative but rely on complex hardware for body tracking. This work explores the feasibility of a model for 3D Human Pose Estimation (HPE) from monocular 2D videos (MediaPipe Pose) in a physiotherapy context, by comparing its performance to ground truth measurements. MediaPipe Pose was investigated in eight exercises typically performed in musculoskeletal physiotherapy sessions, where the Range of Motion (ROM) of the human joints was the evaluated parameter. This model showed the best performance for shoulder abduction, shoulder press, elbow flexion, and squat exercises. Results have shown a MAPE ranging between 14.9% and 25.0%, Pearson's coefficient ranging between 0.963 and 0.996, and cosine similarity ranging between 0.987 and 0.999. Some exercises (e.g., seated knee extension and shoulder flexion) posed challenges due to unusual poses, occlusions, and depth ambiguities, possibly related to a lack of training data. This study demonstrates the potential of HPE from monocular 2D videos, as a markerless, affordable, and accessible solution for musculoskeletal telerehabilitation approaches. Future work should focus on exploring variations of the 3D HPE models trained on physiotherapy-related datasets, such as the Fit3D dataset, and post-preprocessing techniques to enhance the model's performance.


Asunto(s)
Telerrehabilitación , Humanos , Estudios de Factibilidad , Terapia por Ejercicio , Ejercicio Físico , Articulación de la Rodilla
3.
Sensors (Basel) ; 21(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068131

RESUMEN

In 2019, a new virus, SARS-CoV-2, responsible for the COVID-19 disease, was discovered. Asymptomatic and mildly symptomatic patients were forced to quarantine and closely monitor their symptoms and vital signs, most of the time at home. This paper describes e-CoVig, a novel mHealth application, developed as an alternative to the current monitoring paradigm, where the patients are followed up by direct phone contact. The e-CoVig provides a set of functionalities for remote reporting of symptoms, vital signs, and other clinical information to the health services taking care of these patients. The application is designed to register and transmit the heart rate, blood oxygen saturation (SpO2), body temperature, respiration, and cough. The system features a mobile application, a web/cloud platform, and a low-cost specific device to acquire the temperature and SpO2. The architecture of the system is flexible and can be configured for different operation conditions. Current commercial devices, such as oximeters and thermometers, can also be used and read using the optical character recognition (OCR) functionality of the system. The data acquired at the mobile application are sent automatically to the web/cloud application and made available in real-time to the medical staff, enabling the follow-up of several users simultaneously without the need for time consuming phone call interactions. The system was already tested for its feasibility and a preliminary deployment was performed on a nursing home showing promising results.


Asunto(s)
COVID-19 , Aplicaciones Móviles , Telemedicina , Humanos , Cuarentena , SARS-CoV-2
4.
Sports (Basel) ; 7(11)2019 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-31744156

RESUMEN

In a world where technology is assuming a pervasive role, sports sciences are also increasingly exploiting the possibilities opened by advanced sensors and intelligent algorithms. This paper focuses on the development of a convenient, practical, and low-cost system, SwimBIT, which is intended to help swimmers and coaches in performance evaluation, improvement, and injury reduction. Real-world data were collected from 13 triathletes (age 20.8 ± 3.5 years, height 173.7 ± 5.3 cm, and weight 63.5 ± 6.3 kg) with different skill levels in performing the four competitive styles of swimming in order to develop a representative database and allow assessment of the system's performance in swimming conditions. The hardware collects a set of signals from swimmers based on an attitude and heading reference system (AHRS), and a machine learning workflow for data analysis is used to extract a selection of indicators that allows analysis of a swimmer's performance. Based on the AHRS data, three novel indicators are proposed: trunk elevation, body balance, and body rotation. Experimental evaluation has shown promising results, with a 100% accuracy in swim lap segmentation, a precision of 100% in the recognition of backstroke, and a precision of 89.60% in the three remaining swimming techniques (butterfly, breaststroke, and front crawl). The performance indicators proposed here provide valuable information for both swimmers and coaches in their quest for enhancing performance and preventing injuries.

5.
Sensors (Basel) ; 19(8)2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-31018573

RESUMEN

We review some emerging trends in transduction, connectivity and data analytics for Point-of-Care Testing (POCT) of infectious and non-communicable diseases. The patient need for POCT is described along with developments in portable diagnostics, specifically in respect of Lab-on-chip and microfluidic systems. We describe some novel electrochemical and photonic systems and the use of mobile phones in terms of hardware components and device connectivity for POCT. Developments in data analytics that are applicable for POCT are described with an overview of data structures and recent AI/Machine learning trends. The most important methodologies of machine learning, including deep learning methods, are summarised. The potential value of trends within POCT systems for clinical diagnostics within Lower Middle Income Countries (LMICs) and the Least Developed Countries (LDCs) are highlighted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...