RESUMEN
Single-atom catalysis is a field of paramount importance in contemporary science due to its exceptional ability to combine the domains of homogeneous and heterogeneous catalysis. Iron and manganese metalloenzymes are known to be effective in CâH oxidation reactions in nature, inspiring scientists to mimic their active sites in artificial catalytic systems. Herein, a simple and versatile cation exchange method is successfully employed to stabilize low-cost iron and manganese single-atoms in poly(heptazine imides) (PHI). The resulting materials are employed as photocatalysts for toluene oxidation, demonstrating remarkable selectivity toward benzaldehyde. The protocol is then extended to the selective oxidation of different substrates, including (substituted) alkylaromatics, benzyl alcohols, and sulfides. Detailed mechanistic investigations revealed that iron- and manganese-containing photocatalysts work through a similar mechanism via the formation of high-valent MâO species. Operando X-ray absorption spectroscopy (XAS) is employed to confirm the formation of high-valent iron- and manganese-oxo species, typically found in metalloenzymes involved in highly selective CâH oxidations.
RESUMEN
We report the unique heterobimetallic dodecanuclear oxamate-based {CoII6CuII6} nanowheel obtained using an environmentally friendly synthetic protocol. The effective Hamiltonian methodology employed herein allows the rationalisation of magnetic isotropic or anisotropic metal clusters, being a significant advance for future studies of exciting properties only observed at low and ultralow temperatures.
RESUMEN
Herein we demonstrate that adding single atoms of selected transition metals to graphitic carbon nitrides allows the tailoring of the electronic and chemical properties of these 2D nanomaterials, directly impacting their usage in photocatalysis. These single-atom photocatalysts were successfully prepared with Ni2+, Pt2+ or Ru3+ by cation exchange, using poly(heptazine imides) (PHI) as the 2D layered platform. Differences in photocatalytic performance for these metals were assessed using rhodamine-B (RhB) and methyl orange (MO) as model compounds for degradation. We have demonstrated that single atoms may either improve or impair the degradation of RhB and MO, depending on the proper matching of the net charge of these molecules and the surface potential of the catalyst, which in turn is responsive to the metal incorporated into the PHI nanostructures. Computer simulations demonstrated that even one transition metal cation caused dramatic changes in the electronic structure of PHI, especially regarding light absorption, which was extended all along the visible up to the near IR region. Besides introducing new quantum states, the metal atoms strongly polarized the molecular orbitals across the PHI and electrostatic fields arising from the electronic transitions became at least tenfold stronger. This simple proof of concept demonstrates that these new materials hold promise as tools for many important photocatalytic reactions that are strongly dependent on our ability to control surface charge and its polarization under illumination, such as H2 evolution, CO2 reduction and photooxidation in general.
RESUMEN
Herein, the structural defects of metal-free polymeric carbon nitrides were controlled by making use of different precursors in their syntheses, i.e. melamine (CN-M) and thiourea (CN-T), as well as a 1:1 mixture of them (CN-1M:1 T). By controlling the structural defects, the electronic, morphological and chemical properties were modified. Additionally, the activities of synthesized PCNs were evaluated for amoxicillin photodegradation under visible light irradiation (16 mW cm-2). The results of photocatalytic tests showed that CN-T material has better efficiency (100 % removal within 48 h), which is directly related to the greater number of defects present in its structure with consequent improvement of electron-hole pairs separation efficiency. The CN-T material showed excellent stability with only 13 % decrease in its photocatalytic activity after the third cycle. A mechanism for amoxicillin degradation by CN-T was proposed based on the ESI-MS and the in situ EPR allied with spin trapping method investigations.
Asunto(s)
Amoxicilina , Grafito , Catálisis , Luz , Nitrilos , FotólisisRESUMEN
Solar-to-chemical conversion via photocatalysis is of paramount importance for a sustainable future. Thus, investigating the synergistic effects promoted by light in photocatalytic reactions is crucial. The tandem oxidative coupling of alcohols and amines is an attractive route to synthesize imines. Here, we unravel the performance and underlying reaction pathway in the visible-light-driven tandem oxidative coupling of benzyl alcohol and aniline employing Au/CeO2 nanorods as catalysts. We propose an alternative reaction pathway for this transformation that leads to improved efficiencies relative to individual CeO2 nanorods, in which the localized surface plasmon resonance (LSPR) excitation in Au nanoparticles (NPs) plays an important role. Our data suggests a synergism between the hot electrons and holes generated from the LSPR excitation in Au NPs. While the oxygen vacancies in CeO2 nanorods trap the hot electrons and facilitate their transfer to adsorbed O2 at surface vacancy sites, the hot holes in the Au NPs facilitate the α-H abstraction from the adsorbed benzyl alcohol, evolving into benzaldehyde, which then couples with aniline in the next step to yield the corresponding imine. Finally, cerium-coordinated superoxide species abstract hydrogen from the Au surface, regenerating the catalyst surface.