Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739855

RESUMEN

This work cross-correlated rheological, thermodynamic, and conformational features of several natural polysaccharides to their cryoprotective performance. The basis of cryoprotection of FucoPol, pectin, and agar revealed a causal combination of (i) an emerging sol-gel transition (p = 0.014) at near-hypothermia (4 °C), (ii) noncolligative attenuated supercooling of the kinetic freezing point of water (p = 0.026) supporting ice growth anticipation, and (iii) increased conformational order (p < 0.0001), where helix-/sheet-like features boost cryoprotection. FucoPol, of highest cryoprotective performance, revealed a predominantly helical structure (α/ß = 1.5) capable of forming a gel state at 4 °C and the highest degree of supercooling attenuation (TH = 6.2 °C). Ice growth anticipation with gel-like polysaccharides suggests that the gel matrix neutralizes elastic deformations and lethal cell volumetric fluctuations during freezing, thus preventing the loss of homeostasis and increasing post-thaw viability. Ultimately, structured gels capable of attenuated supercooling enable cryoprotective action at the polymer-cell interface, in addition to polymer-ice interactions. This rationale potentiates implementing alternative, biobased, noncytotoxic polymers in cryobiology.

2.
Biomimetics (Basel) ; 9(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38667224

RESUMEN

In recent decades, the requirements for implantable medical devices have increased, but the risks of implant rejection still exist. These issues are primarily associated with poor osseointegration, leading to biofilm formation on the implant surface. This study focuses on addressing these issues by developing a biomaterial for implant coatings. 45S5 bioglass® has been widely used in tissue engineering due to its ability to form a hydroxyapatite layer, ensuring a strong bond between the hard tissue and the bioglass. In this context, 45S5 bioglasses®, modified by the incorporation of different amounts of copper oxide, from 0 to 8 mol%, were synthesized by the melt-quenching technique. The incorporation of Cu ions did not show a significant change in the glass structure. Since the bioglass exhibited the capacity for being polarized, thereby promoting the osseointegration effectiveness, the electrical properties of the prepared samples were studied using the impedance spectroscopy method, in the frequency range of 102-106 Hz and temperature range of 200-400 K. The effects of CuO on charge transport mobility were investigated. Additionally, the bioactivity of the modified bioglasses was evaluated through immersion tests in simulated body fluid. The results revealed the initiation of a Ca-P-rich layer formation on the surface within 24 h, indicating the potential of the bioglasses to enhance the bone regeneration process.

3.
Polymers (Basel) ; 16(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38399904

RESUMEN

The small pore size of electrospun membranes prevents their use as three-dimensional scaffolds. In this work, we produced polycaprolactone (PCL) electrospun fibrous membranes with expanded pores by incorporating chitosan (CS) granules into the PCL solution. Scanning electron microscopy images confirmed the presence of the CS granules embedded in the PCL fibers, creating an open structure. Tensile testing results showed that the addition of CS decreased both Young's modulus and the yield stress, but co-electrospun membranes (PCL fibers blended with CS-containing PCL fibers) exhibited higher values compared to single electrospun membranes (CS-containing PCL fibers). Human fibroblasts adhered to and proliferated on all scaffolds. Nuclear staining revealed that cells populated the entire scaffold when CS granules were present, while in PCL membranes, cells were mostly limited to the surface due to the small pore size. Overall, our findings demonstrate that electrospun membranes containing CS granules have sufficiently large pores to facilitate fibroblast infiltration without compromising the mechanical stability of the structure.

4.
Materials (Basel) ; 17(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276437

RESUMEN

45S5 Bioglass has been widely used in regenerative medicine due to its ability to dissolve when inserted into the body. Its typically amorphous structure allows for an ideal dissolution rate for the formation of the hydroxyapatite layer, which is important for the development of new bone. This bioactive capacity can also be controlled by adding other oxides (e.g., SrO, ZnO, and MgO) to the 45S5 Bioglass network or by storing electrical charge. Ions such as zinc, magnesium, and strontium allow for specific biological responses to be added, such as antibacterial action and the ability to increase the rate of osteoblast proliferation. The charge storage capacity allows for a higher rate of bioactivity to be achieved, allowing for faster attachment to the host bone, decreasing the patient's recovery time. Therefore, it is necessary to understand the variation in the structure of the bioglass with regard to the amount of non-bridging oxygens (NBOs), which is important for the bioactivity rate not to be compromised, and also its influence on the electrical behavior relevant to its potential as electrical charge storage. Thus, several bioactive glass compositions were synthesized based on the 45S5 Bioglass formulation with the addition of various concentrations (0.25, 0.5, 1, and 2, mol%) of zinc, strontium, or magnesium oxides. The influence of the insertion of these oxides on the network was evaluated by studying the amount of NBOs using Raman spectroscopy and their implication on the electrical behavior. Electrical characterization was performed in ac (alternating current) and dc (direct current) regimes.

5.
Gels ; 9(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38131968

RESUMEN

Cancer is a disease that continues to greatly impact our society. Developing new and more personalized treatment options is crucial to decreasing the cancer burden. In this study, we combined magnetic polysaccharide microparticles with a Pluronic thermoresponsive hydrogel to develop a multifunctional, injectable drug delivery system (DDS) for magnetic hyperthermia applications. Gellan gum and alginate microparticles were loaded with superparamagnetic iron oxide nanoparticles (SPIONs) with and without coating. The magnetic microparticles' registered temperature increases up to 4 °C upon the application of an alternating magnetic field. These magnetic microparticles were mixed with drug-loaded microparticles, and, subsequently, this mixture was embedded within a Pluronic thermoresponsive hydrogel that is capable of being in the gel state at 37 °C. The proposed DDS was capable of slowly releasing methylene blue, used as a model drug, for up to 9 days. The developed hydrogel/microparticle system had a smaller rate of drug release compared with microparticles alone. This system proved to be a potential thermoresponsive DDS suitable for magnetic hyperthermia applications, thus enabling a synergistic treatment for cancer.

6.
Nanomaterials (Basel) ; 13(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37836358

RESUMEN

The non-surgical treatments are being required to reconstruct damaged tissue, prioritizing our body's natural healing process. Thus, the use of bioactive materials such as bioactive glass has been studied to support the repair and restoration of hard and soft tissue. Thus, in this work Bioglass 45S5 was developed, adding 1 and 2%mol of SrO or MgO and the physical and biological properties were evaluated. The addition of MgO and SrO at the studied concentrations promoted the slight increase in non-bridging oxygens number, observed through the temperature shift in phase transitions to lower values compared to Bioglass 45S5. The insertion of the ions also showed a positive effect on Saos-2 cell viability, decreasing the cytotoxic of Bioglass 45S5. Besides the Ca/P ratio on the pellets surface demonstrating no evidence of higher reactivity between Bioglass 45S5 and Bioglass with Sr and Mg, micrographs show that at 24 h the Ca/P rich layer is denser than in Bioglass 45S5 after the contact with simulated body fluid. The samples with Sr and Mg show a higher antibacterial effect compared to Bioglass 45S5. The addition of the studied ions may benefit the biological response of Bioglass 45S5 in dental applications as scaffolds or coatings.

7.
J Funct Biomater ; 14(7)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37504864

RESUMEN

Biofilm-related implant infections pose a substantial threat to patients, leading to inflammation in the surrounding tissue, and often resulting in implant loss and the necessity for additional surgeries. Overcoming this implantology challenge is crucial to ensure the success and durability of implants. This study shows the development of antibacterial materials for implant coatings by incorporating copper into 45S5 Bioglass®. By combining the regenerative properties of Bioglass® with the antimicrobial effects of copper, this material has the potential to prevent infections, enhance osseointegration and improve the long-term success of implants. Bioglasses modified with various concentrations of CuO (from 0 to 8 mol%) were prepared with the melt-quenching technique. Structural analysis using Raman and FTIR spectroscopies did not reveal significant alterations in the bioglasses structure with the addition of Cu. The antibacterial activity of the samples was assessed against Gram-positive and Gram-negative bacteria, and the results demonstrated significant inhibition of bacterial growth for the bioglass with 0.5 mol% of CuO. Cell viability studies indicated that the samples modified with up to 4 mol% of CuO maintained good cytocompatibility with the Saos-2 cell line at extract concentrations up to 25 mg/mL. Furthermore, the bioactivity assessment demonstrated the formation of a calcium phosphate (CaP)-rich layer on the surfaces of all bioglasses within 24 h. Our findings show that the inclusion of copper in the bioglass offers a significant enhancement in its potential as a coating material for implants, resulting in notable advancements in both antibacterial efficacy and osteointegration properties.

8.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37445749

RESUMEN

Implantology is crucial for restoring aesthetics and masticatory function in oral rehabilitation. Despite its advantages, certain issues, such as bacterial infection, may still arise that hinder osseointegration and result in implant rejection. This work aims to address these challenges by developing a biomaterial for dental implant coating based on 45S5 Bioglass® modified by zirconium insertion. The structural characterization of the glasses, by XRD, showed that the introduction of zirconium in the Bioglass network at a concentration higher than 2 mol% promotes phase separation, with crystal phase formation. Impedance spectroscopy was used, in the frequency range of 102-106 Hz and the temperature range of 200-400 K, to investigate the electrical properties of these Bioglasses, due to their ability to store electrical charges and therefore enhance the osseointegration capacity. The electrical study showed that the presence of crystal phases, in the glass ceramic with 8 mol% of zirconium, led to a significant increase in conductivity. In terms of biological properties, the Bioglasses exhibited an antibacterial effect against Gram-positive and Gram-negative bacteria and did not show cytotoxicity for the Saos-2 cell line at extract concentrations up to 25 mg/mL. Furthermore, the results of the bioactivity test revealed that within 24 h, a CaP-rich layer began to form on the surface of all the samples. According to our results, the incorporation of 2 mol% of ZrO2 into the Bioglass significantly improves its potential as a coating material for dental implants, enhancing both its antibacterial and osteointegration properties.


Asunto(s)
Implantes Dentales , Circonio/farmacología , Circonio/química , Antibacterianos , Bacterias Gramnegativas , Bacterias Grampositivas , Cerámica/farmacología , Cerámica/química , Vidrio/química , Propiedades de Superficie
9.
Materials (Basel) ; 16(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37241507

RESUMEN

Ferrites have been widely studied for their use in the biomedical area, mostly due to their magnetic properties, which gives them the potential to be used in diagnostics, drug delivery, and in treatment with magnetic hyperthermia, for example. In this work, KFeO2 particles were synthesized with a proteic sol-gel method using powdered coconut water as a precursor; this method is based on the principles of green chemistry. To improve its properties, the base powder obtained was subjected to multiple heat treatments at temperatures between 350 and 1300 °C. The samples obtained underwent structural, morphological, biocompatibility, and magnetic characterization. The results show that upon raising the heat treatment temperature, not only is the wanted phase detected, but also the secondary phases. To overcome these secondary phases, several different heat treatments were carried out. Using scanning electron microscopy, grains in the micrometric range were observed. Saturation magnetizations between 15.5 and 24.1 emu/g were observed for the samples containing KFeO2 with an applied field of 50 kOe at 300 K. From cellular compatibility (cytotoxicity) assays, for concentrations up to 5 mg/mL, only the samples treated at 350 °C were cytotoxic. However, the samples containing KFeO2, while being biocompatible, had low specific absorption rates (1.55-5.76 W/g).

10.
Int J Mol Sci ; 24(6)2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36982320

RESUMEN

Dental implants have emerged as one of the most consistent and predictable treatments in the oral surgery field. However, the placement of the implant is sometimes associated with bacterial infection leading to its loss. In this work, we intend to solve this problem through the development of a biomaterial for implant coatings based on 45S5 Bioglass® modified with different amounts of niobium pentoxide (Nb2O5). The structural feature of the glasses, assessed by XRD and FTIR, did not change in spite of Nb2O5 incorporation. The Raman spectra reveal the Nb2O5 incorporation related to the appearance of NbO4 and NbO6 structural units. Since the electrical characteristics of these biomaterials influence their osseointegration ability, AC and DC electrical conductivity were studied by impedance spectroscopy, in the frequency range of 102-106 Hz and temperature range of 200-400 K. The cytotoxicity of glasses was evaluated using the osteosarcoma Saos-2 cells line. The in vitro bioactivity studies and the antibacterial tests against Gram-positive and Gram-negative bacteria revealed that the samples loaded with 2 mol% Nb2O5 had the highest bioactivity and greatest antibacterial effect. Overall, the results showed that the modified 45S5 bioactive glasses can be used as an antibacterial coating material for implants, with high bioactivity, being also non-cytotoxic to mammalian cells.


Asunto(s)
Implantes Dentales , Animales , Niobio/química , Antibacterianos/química , Bacterias Gramnegativas , Bacterias Grampositivas , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Vidrio/química , Cerámica/química , Mamíferos
11.
Prog Biomater ; 12(2): 137-153, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36757613

RESUMEN

Bone regeneration is one of the most well-known fields in tissue regeneration. The major focus concerns polymeric/ceramic composite scaffolds. In this work, several composite scaffolds based on chitosan (CH), with low and high molecular weights, and different concentrations of ceramics like mesoporous bioactive glass (MBG), mesoporous hydroxyapatite (MHAp) and both MBG and MHAp (MC) were produced by lyophilization. The purpose is to identify the best combination regarding optimal morphology and properties. The tests of the scaffolds present a highly porous structure with interconnected pores. The compression modulus increases with ceramic concentration in the scaffolds. Furthermore, the 75%MBG (835 ± 160 kPa) and 50%MC (1070 ± 205 kPa) samples are the ones that mostly enhance increases in mechanical properties. The swelling capacity increases with MBG and MC, respectively, to 700% and 900% and decreases to 400% when MHAp concentration increases. All scaffolds are non-cytotoxic at 12.5 mg/mL. The CHL scaffolds improve cell adhesion and proliferation compared to CHH, and the MC scaffold samples, show better results than those produced with just MBG or MHAp. The composite scaffolds of chitosan with MBG and MHAp, have revealed to be the best combination due to their enhanced performance in bone tissue engineering.

12.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674644

RESUMEN

Conventional bone cancer treatment often results in unwanted side effects, critical-sized bone defects, and inefficient cancer-cell targeting. Therefore, new approaches are necessary to better address bone cancer treatment and patient's recovery. One solution may reside in the combination of bone regeneration scaffolds with magnetic hyperthermia. By incorporating pristine superparamagnetic iron oxide nanoparticles (pSPIONs) into additively manufactured scaffolds we created magnetic structures for magnetic hyperthermia and bone regeneration. For this, hydroxyapatite (HA) particles were integrated in a polymeric matrix composed of chitosan (CS) and poly (vinyl alcohol) (PVA). Once optimized, pSPIONs were added to the CS/PVA/HA paste at three different concentrations (1.92, 3.77, and 5.54 wt.%), and subsequently additively manufactured to form a scaffold. Results indicate that scaffolds containing 3.77 and 5.54 wt.% of pSPIONs, attained temperature increases of 6.6 and 7.5 °C in magnetic hyperthermia testing, respectively. In vitro studies using human osteosarcoma Saos-2 cells indicated that pSPIONs incorporation significantly stimulated cell adhesion, proliferation and alkaline phosphatase (ALP) expression when compared to CS/PVA/HA scaffolds. Thus, these results support that CS/PVA/HA/pSPIONs scaffolds with pSPIONs concentrations above or equal to 3.77 wt.% have the potential to be used for magnetic hyperthermia and bone regeneration.


Asunto(s)
Quitosano , Hipertermia Inducida , Humanos , Quitosano/química , Durapatita/química , Andamios del Tejido/química , Regeneración Ósea , Nanopartículas Magnéticas de Óxido de Hierro , Fenómenos Magnéticos , Ingeniería de Tejidos/métodos
13.
Polymers (Basel) ; 14(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35458246

RESUMEN

Hybrid scaffolds obtained by combining two or more biopolymers are studied in the context of tissue regeneration due to the possibility of achieving new functional properties or structural features. The aim of this work was to produce a new type of hybrid polycaprolactone (PCL)/chitosan (CS) electrospun mat through the controlled deposition of CS flakes interspaced between the PCL fibers. A poly(ethylene oxide) (PEO) solution was used to transport CS flakes with controlled size. This, and the PCL solution, were simultaneously electrospun onto a rotatory mandrel in a perpendicular setup. Different PCL/CS mass ratios were also studied. The morphology of the resulting fibers, evaluated by SEM, confirmed the presence of the CS flakes between the PCL fibers. The addition of PEO/CS fibers resulted in hydrophilic mats with lower Young's modulus relatively to PCL mats. In vitro cell culture results indicated that the addition of CS lowers both the adhesion and the proliferation of human dermal fibroblasts. The present work demonstrates the feasibility of achieving a controlled deposition of a polymeric component in granular form onto a collector where electrospun nanofibers are being deposited, thereby producing a hybrid scaffold.

14.
Polymers (Basel) ; 13(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34577923

RESUMEN

Reactive oxygen species (ROS) are dangerous sources of macromolecular damage. While most derive from mitochondrial oxidative phosphorylation, their production can be triggered by exogenous stresses, surpassing the extinction capacity of intrinsic antioxidant defense systems of cells. Here, we report the antioxidant activity of FucoPol, a fucose-rich polyanionic polysaccharide produced by Enterobacter A47, containing ca. 17 wt% of negatively charged residues in its structure. Ferric reducing antioxidant power (FRAP) assays coupled to Hill binding kinetics fitting have shown FucoPol can neutralize ferricyanide and Fe3+-TPTZ species at an EC50 of 896 and 602 µg/mL, respectively, with positive binding cooperativity (2.52 ≤ H ≤ 4.85). This reducing power is greater than most polysaccharides reported. Moreover, an optimal 0.25% w/v FucoPol concentration shown previously to be cryo- and photoprotective was also demonstrated to protect Vero cells against H2O2-induced acute exposure not only by attenuating metabolic viability decay, but also by accentuating post-stress proliferation capacity, whilst preserving cell morphology. These results on antioxidant activity provide evidence for the biopolymer's ability to prevent positive feedback cascades of the radical-producing Fenton reaction. Ultimately, FucoPol provides a biotechnological alternative for implementation in cryopreservation, food supplementation, and photoprotective sunscreen formula design, as all fields benefit from an antioxidant functionality.

15.
Nanomaterials (Basel) ; 11(1)2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33466651

RESUMEN

The physical properties of the cubic and ferrimagnetic spinel ferrite LiFe5O8 has made it an attractive material for electronic and medical applications. In this work, LiFe5O8 nanosized crystallites were synthesized by a novel and eco-friendly sol-gel process, by using powder coconut water as a mediated reaction medium. The dried powders were heat-treated (HT) at temperatures between 400 and 1000 °C, and their structure, morphology, electrical and magnetic characteristics, cytotoxicity, and magnetic hyperthermia assays were performed. The heat treatment of the LiFe5O8 powder tunes the crystallite sizes between 50 nm and 200 nm. When increasing the temperature of the HT, secondary phases start to form. The dielectric analysis revealed, at 300 K and 10 kHz, an increase of ε' (≈10 up to ≈14) with a tanδ almost constant (≈0.3) with the increase of the HT temperature. The cytotoxicity results reveal, for concentrations below 2.5 mg/mL, that all samples have a non-cytotoxicity property. The sample heat-treated at 1000 °C, which revealed hysteresis and magnetic saturation of 73 emu g-1 at 300 K, showed a heating profile adequate for magnetic hyperthermia applications, showing the potential for biomedical applications.

16.
Nanomaterials (Basel) ; 11(1)2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-33374282

RESUMEN

Several problems and limitations faced in the treatment of many diseases can be overcome by using controlled drug delivery systems (DDS), where the active compound is transported to the target site, minimizing undesirable side effects. In situ-forming hydrogels that can be injected as viscous liquids and jellify under physiological conditions and biocompatible clay nanoparticles have been used in DDS development. In this work, polymer-clay composites based on Pluronics (F127 and F68) and nanoclays were developed, aiming at a biocompatible and injectable system for long-term controlled delivery of methylene blue (MB) as a model drug. MB release from the systems produced was carried out at 37 °C in a pH 7.4 medium. The Pluronic formulation selected (F127/F68 18/2 wt.%) displayed a sol/gel transition at approx. 30 °C, needing a 2.5 N force to be injected at 25 °C. The addition of 2 wt.% of Na116 clay decreased the sol/gel transition to 28 °C and significantly enhanced its viscoelastic modulus. The most suitable DDS for long-term application was the Na116-MB hybrid from which, after 15 days, only 3% of the encapsulated MB was released. The system developed in this work proved to be injectable, with a long-term drug delivery profile up to 45 days.

17.
Molecules ; 25(21)2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33147742

RESUMEN

In this study, the main aim was to fabricate propolis (Ps)-containing wound dressing patches using 3D printing technology. Different combinations and structures of propolis (Ps)-incorporated sodium alginate (SA) scaffolds were developed. The morphological studies showed that the porosity of developed scaffolds was optimized when 20% (v/v) of Ps was added to the solution. The pore sizes decreased by increasing Ps concentration up to a certain level due to its adhesive properties. The mechanical, swelling-degradation (weight loss) behaviors, and Ps release kinetics were highlighted for the scaffold stability. An antimicrobial assay was employed to test and screen antimicrobial behavior of Ps against Escherichia coli and Staphylococcus aureus strains. The results show that the Ps-added scaffolds have an excellent antibacterial activity because of Ps compounds. An in vitro cytotoxicity test was also applied on the scaffold by using the extract method on the human dermal fibroblasts (HFFF2) cell line. The 3D-printed SA-Ps scaffolds are very useful structures for wound dressing applications.


Asunto(s)
Alginatos/química , Antibacterianos , Escherichia coli/crecimiento & desarrollo , Fibroblastos/metabolismo , Ensayo de Materiales , Impresión Tridimensional , Própolis/química , Staphylococcus aureus/crecimiento & desarrollo , Andamios del Tejido/química , Antibacterianos/química , Antibacterianos/farmacología , Línea Celular , Humanos
18.
ACS Appl Bio Mater ; 2(11): 4790-4800, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-35021479

RESUMEN

Polymeric scaffolds incorporating plant-derived compounds, produced by electrospinning, have attracted attention in the field of skin tissue engineering. This study evaluates the sustained antioxidant activity of polycaprolactone (PCL)/gelatin nanofibers prepared by electrospinning and incorporating loaded liposomes of epigallocatechin-3-gallate (EGCG), a strong antibacterial and antioxidant molecule found in green tea, that significantly accelerates the wound-healing process. The morphology and the structural properties of the membranes were characterized by scanning electron microscopy (SEM) and FTIR spectroscopy. Results revealed that the EGCG released from PCL+gelatin nanofibers scavenges the toxic ROS species generated by exposure to either H2O2 or UV radiation and slows down the oxidation events associated with damage. This study provides the basis for development of promising nanofiber formulations containing EGCG that might enhance repair/regeneration of skin tissue.

19.
Int J Biol Macromol ; 102: 1174-1185, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28487195

RESUMEN

Polymer blending is a strategy commonly used to obtain hybrid materials possessing properties better than those of the individual constituents regarding their use in scaffolds for Tissue Engineering. In the present work, the scaffolds produced by electrospinning solutions of polymeric blends obtained using a polyester (polycaprolactone, PCL), a polysaccharide (chitosan, CS) and a protein (gelatin extracted from cold water fish skin, GEL), were investigated. Solutions conductivity, shear viscosity and surface tension were determined. GEL-containing scaffolds were crosslinked with vapour phase glutaraldehyde (GTA). The scaffolds were characterized physico-chemically regarding fibre morphology, porosity, water contact angle, mechanical properties, chemical bonds and fibre and dimensional stability upon immersion in water and cell culture medium. The scaffolds were further tested in vitro for cell adhesion, growth and morphology of human foetal fibroblasts (cell line HFFF2). Results show that the nanofibrous scaffolds are hydrophilic and display the typical porosity of non-woven fibre mats. The CS/PCL and CS/PCL/GEL scaffolds have the highest elastic modulus (48MPa). Dimensional stability is best for the CS/PCL/GEL scaffolds. FTIR spectra confirm the occurrence of cross-linking reactions of GTA with both GEL and CS. Cell adhesion ratio ranked from excellent (close to 100%) to satisfactory (around 50%) in the order PCL/GEL>CS/GEL>CS/PCL/GEL>CS/PCL. Cell populations show an extended lag phase in comparison with the controls but cell proliferation occurs on all scaffolds until confluence is reached. In conclusion, all scaffolds studied possess characteristics that enable them to be used in skin tissue engineering but the CS/PCL/GEL scaffolds have better physical properties whereas the PCL/GEL scaffolds support a higher cell adhesion.


Asunto(s)
Quitosano/química , Gelatina/química , Nanofibras/química , Poliésteres/química , Piel/citología , Ingeniería de Tejidos , Andamios del Tejido/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Adhesión Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Humanos , Fenómenos Mecánicos , Porosidad , Humectabilidad
20.
Carbohydr Polym ; 147: 304-312, 2016 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-27178936

RESUMEN

In the present work, two drug delivery systems were produced by encapsulating doxorubicin into chitosan and O-HTCC (ammonium-quaternary derivative of chitosan) nanoparticles. The results show that doxorubicin release is independent of the molecular weight and is higher at acidic pH (4.5) than at physiological pH. NPs with an average hydrodynamic diameter bellow 200nm are able to encapsulate up to 70% and 50% of doxorubicin in the case of chitosan and O-HTCC nanoparticles, respectively. O-HTCC nanoparticles led to a higher amount of doxorubicin released than chitosan nanoparticles, for the same experimental conditions, although the release mechanism was not altered. A burst effect occurs within the first hours of release, reaching a plateau after 24h. Fitting mathematical models to the experimental data led to a concordant release mechanism between most samples, indicating an anomalous or mixed release, which is in agreement with the swelling behavior of chitosan described in the literature.


Asunto(s)
Quitosano/química , Doxorrubicina/administración & dosificación , Portadores de Fármacos/química , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Modelos Químicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...