Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 179(12): 2938-2952, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34978070

RESUMEN

BACKGROUND AND PURPOSE: Metabolic and vascular dysfunction are common features of obesity. Aryl hydrocarbon receptor (AhR) regulates lipid metabolism and vascular homeostasis, but whether vascular AhR are activated in obesity or have a protective and/or harmful effects on vascular function in obesity are unknown. Our study addresses whether AhR activation contributes to obesity-associated vascular dysfunction and the mechanisms involved in these AhR effects. EXPERIMENTAL APPROACH: Male AhR KO (Ahr-/- ) and WT mice were fed either control or a HF (high-fat) diet for 10 weeks. Metabolic and inflammatory parameters were measured in serum and adipose tissue. Vascular reactivity (isometric force) was evaluated using a myography. Endothelial NOS (eNOS) and AhR protein expression was determined by western blot, Cyp1A1 and Nos3 gene expression by RT-PCR and.NO production was quantified by DAF fluorescence. KEY RESULTS: HF diet increased total serum HDL and LDL, as well as vascular AhR protein expression and proinflammatory cytokines in the adipose tissue. HF diet decreased endothelium-dependent vasodilation. AhR deletion protected mice from HF diet-induced dyslipidaemia, weight gain and inflammatory processes. HF diet-induced endothelial dysfunction was attenuated in Ahr-/- mice. Vessels from Ahr-/- mice exhibited a greater NO reserve. In cultured endothelial cells, lysophosphatidylcholine (LPC) a major component of LDL and oxidized LDL [oxLDL]) reduced Nos3 gene expression and NO production. Antagonism of the AhR inhibited LPC effects on endothelial cells and induced decreased endothelium-dependent vasodilation. CONCLUSION AND IMPLICATIONS: AhR deletion attenuates HF diet-induced dyslipidaemia and vascular dysfunction by improving eNOS/NO signalling. Targeting AhRs may prevent obesity-associated vascular dysfunction.


Asunto(s)
Dieta Alta en Grasa , Receptores de Hidrocarburo de Aril , Animales , Dieta Alta en Grasa/efectos adversos , Células Endoteliales/metabolismo , Endotelio Vascular , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Vasodilatación/fisiología
2.
J Biosci ; 472022.
Artículo en Inglés | MEDLINE | ID: mdl-34951408

RESUMEN

Protease-activated receptor (PAR)2 has been implicated in mediating allergic airway inflammation.We investigate the role of PAR2 in lung inflammation and neutrophil and eosinophil recruitment into the lungs in amousemodel of shortterm acute allergic inflammation. Allergic lung inflammation was induced in sensitized BALB/c mice through intranasal instillations of ovalbumin (OVA), and mice were pretreated with the PAR2 antagonist ENMD1068 or with the PAR2-activating peptide (PAR2-AP) 1 hour before each OVA challenge. Bronchoalveolar lavage fluid (BALF) was collected, and the lungs, trachea and lymph nodes were removed after the last challenge to analyze the airway inflammation. PAR2 blockade reduced OVA-induced eosinophil and neutrophil counts, CXCL1, CCL5, amphiregulin, and interleukin (IL)-6 and 13 levels.Moreover, PAR2 blockade reduced OVA-induced PAR2 expression in cells present in BALF 2 hour after OVA challenge, and PAR2-AP acted synergistically with OVA promoting eosinophil recruitment intoBALF and increased IL-4 and IL-13 levels in lymph nodes. Conversely, PAR2 blockade increased IL- 10 levels when compared with OVA-treated mice. Our results provide evidence for a mechanism by which PAR2 meditates acute lung inflammation triggered by multiple exposures to allergen through a modulatory role on cytokine production and vascular permeability implicated in the lung diseases such as asthma.


Asunto(s)
Neumonía , Receptor PAR-2/metabolismo , Animales , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/patología , Leucocitos , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Ovalbúmina/metabolismo , Neumonía/tratamiento farmacológico , Neumonía/metabolismo , Neumonía/patología , Receptor PAR-2/genética
3.
Clin Sci (Lond) ; 135(15): 1845-1858, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34269800

RESUMEN

OBJECTIVE: The mechanisms involved in NOX5 activation in atherosclerotic processes are not completely understood. The present study tested the hypothesis that lysophosphatidylcholine (LPC), a proatherogenic component of oxLDL, induces endothelial calcium influx, which drives NOX5-dependent reactive oxygen species (ROS) production, oxidative stress, and endothelial cell dysfunction. APPROACH: Human aortic endothelial cells (HAEC) were stimulated with LPC (10-5 M, for different time points). Pharmacological inhibition of NOX5 (Melittin, 10-7 M) and NOX5 gene silencing (siRNA) was used to determine the role of NOX5-dependent ROS production in endothelial oxidative stress induced by LPC. ROS production was determined by lucigenin assay and electron paramagnetic spectroscopy (EPR), calcium transients by Fluo4 fluorimetry, and NOX5 activity and protein expression by pharmacological assays and immunoblotting, respectively. RESULTS: LPC increased ROS generation in endothelial cells at short (15 min) and long (4 h) stimulation times. LPC-induced ROS was abolished by a selective NOX5 inhibitor and by NOX5 siRNA. NOX1/4 dual inhibition and selective NOX1 inhibition only decreased ROS generation at 4 h. LPC increased HAEC intracellular calcium, important for NOX5 activation, and this was blocked by nifedipine and thapsigargin. Bapta-AM, selective Ca2+ chelator, prevented LPC-induced ROS production. NOX5 knockdown decreased LPC-induced ICAM-1 mRNA expression and monocyte adhesion to endothelial cells. CONCLUSION: These results suggest that NOX5, by mechanisms linked to increased intracellular calcium, is key to early LPC-induced endothelial oxidative stress and pro-inflammatory processes. Since these are essential events in the formation and progression of atherosclerotic lesions, the present study highlights an important role for NOX5 in atherosclerosis.


Asunto(s)
Aterosclerosis/enzimología , Células Endoteliales/efectos de los fármacos , Lisofosfatidilcolinas/toxicidad , NADPH Oxidasa 5/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Aterosclerosis/patología , Calcio/metabolismo , Señalización del Calcio , Adhesión Celular , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/enzimología , Células Endoteliales/patología , Activación Enzimática , Inhibidores Enzimáticos/farmacología , Humanos , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Monocitos/metabolismo , NADPH Oxidasa 5/antagonistas & inhibidores , NADPH Oxidasa 5/genética , Interferencia de ARN
4.
Circ Res ; 128(7): 969-992, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33793333

RESUMEN

Cells respond to stress by activating a variety of defense signaling pathways, including cell survival and cell death pathways. Although cell survival signaling helps the cell to recover from acute insults, cell death or senescence pathways induced by chronic insults can lead to unresolved pathologies. Arterial hypertension results from chronic physiological maladaptation against various stressors represented by abnormal circulating or local neurohormonal factors, mechanical stress, intracellular accumulation of toxic molecules, and dysfunctional organelles. Hypertension and aging share common mechanisms that mediate or prolong chronic cell stress, such as endoplasmic reticulum stress and accumulation of protein aggregates, oxidative stress, metabolic mitochondrial stress, DNA damage, stress-induced senescence, and proinflammatory processes. This review discusses common adaptive signaling mechanisms against these stresses including unfolded protein responses, antioxidant response element signaling, autophagy, mitophagy, and mitochondrial fission/fusion, STING (signaling effector stimulator of interferon genes)-mediated responses, and activation of pattern recognition receptors. The main molecular mechanisms by which the vasculature copes with hypertensive and aging stressors are presented and recent advancements in stress-adaptive signaling mechanisms as well as potential therapeutic targets are discussed.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Hipertensión/fisiopatología , Estrés Fisiológico/fisiología , Adaptación Fisiológica , Envejecimiento/fisiología , Envejecimiento Prematuro/fisiopatología , Animales , Muerte Celular , Supervivencia Celular , Senescencia Celular , Daño del ADN , Modelos Animales de Enfermedad , Humanos , Hipertensión/etiología , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Estrés Oxidativo , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal , Estrés Mecánico , Respuesta de Proteína Desplegada
5.
Sci Rep ; 10(1): 19258, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159128

RESUMEN

Baroreceptor and chemoreceptor reflexes modulate inflammatory responses. However, whether these reflexes attenuate periodontal diseases has been poorly examined. Thus, the present study determined the effects of electrical activation of the carotid sinus nerve (CSN) in rats with periodontitis. We hypothesized that activation of the baro and chemoreflexes attenuates alveolar bone loss and the associated inflammatory processes. Electrodes were implanted around the CSN, and bilateral ligation of the first mandibular molar was performed to, respectively, stimulate the CNS and induce periodontitis. The CSN was stimulated daily for 10 min, during nine days, in unanesthetized animals. On the eighth day, a catheter was inserted into the left femoral artery and, in the next day, the arterial pressure was recorded. Effectiveness of the CNS electrical stimulation was confirmed by hypotensive responses, which was followed by the collection of a blood sample, gingival tissue, and jaw. Long-term (9 days) electrical stimulation of the CSN attenuated bone loss and the histological damage around the first molar. In addition, the CSN stimulation also reduced the gingival and plasma pro-inflammatory cytokines induced by periodontitis. Thus, CSN stimulation has a protective effect on the development of periodontal disease mitigating alveolar bone loss and inflammatory processes.


Asunto(s)
Pérdida de Hueso Alveolar/terapia , Seno Carotídeo/inervación , Terapia por Estimulación Eléctrica , Periodontitis/terapia , Pérdida de Hueso Alveolar/metabolismo , Pérdida de Hueso Alveolar/patología , Animales , Inflamación/metabolismo , Inflamación/patología , Inflamación/terapia , Masculino , Periodontitis/metabolismo , Periodontitis/patología , Ratas , Ratas Wistar
6.
Cells ; 8(12)2019 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-31817997

RESUMEN

Aldosterone excess aggravates endothelial dysfunction in diabetes and hypertension by promoting the increased generation of reactive oxygen species, inflammation, and insulin resistance. Aldosterone activates the molecular platform inflammasome in immune system cells and contributes to vascular dysfunction induced by the mineralocorticoid hormone. It is unclear as to whether the NLRP3 inflammasome associated with the mineralocorticoid receptor contributes to vascular dysfunction in diabetic conditions. Here, we tested the hypothesis that an excess of aldosterone induces vascular dysfunction in type 2 diabetes, via the activation of mineralocorticoid receptors (MR) and assembly of the NLRP3 inflammasome. Mesenteric resistance arteries from control (db/m) and diabetic (db/db) mice treated with vehicle, spironolactone (MR antagonist) or an NLRP3 selective inhibitor (MCC950) were used to determine whether NLRP3 contributes to diabetes-associated vascular dysfunction. Db/db mice exhibited increased vascular expression/activation of caspase-1 and IL-1ß, increased plasma IL-1ß levels, active caspase-1 in peritoneal macrophages, and reduced acetylcholine (ACh) vasodilation, compared to db/m mice. Treatment of db/db mice with spironolactone and MCC950 decreased plasma IL-1ß and partly restored ACh vasodilation. Spironolactone also reduced active caspase-1-positive macrophages in db/db mice, events that contribute to diabetes-associated vascular changes. These data clearly indicate that MR and NLRP3 activation contribute to diabetes-associated vascular dysfunction and pro-inflammatory phenotype.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Receptores de Mineralocorticoides/metabolismo , Animales , Western Blotting , Caspasa 1/metabolismo , Citometría de Flujo , Furanos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Indenos , Masculino , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Espironolactona/farmacología , Sulfonamidas , Sulfonas/farmacología
7.
Toxicol Appl Pharmacol ; 369: 30-38, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30763598

RESUMEN

Despite all the development of modern medicine, around 100 compounds derived from natural products were undergoing clinical trials only at the end of 2013. Among these natural substances in clinical trials, we found the resveratrol (RES), a pharmacological multi-target drug. RES analgesic properties have been demonstrated, although the bases of these mechanisms have not been fully elucidated. The aim of this study was to evaluate the involvement of opioid and cannabinoid systems in RES-induced peripheral antinociception. Paw withdrawal method was used and hyperalgesia was induced by carrageenan (200 µg/paw). All drugs were given by intraplantar injection in male Swiss mice (n = 5). RES (100 µg/paw) administered in the right hind paw induced local antinociception that was antagonized by naloxone, non-selective opioid receptor antagonist, and clocinnamox, µOR selective antagonist. Naltrindole and nor-binaltorfimine, selective antagonists for δOR and kOR, respectively, did not reverse RES-induced peripheral antinociception. CB1R antagonist AM251, but not CB2R antagonist AM630, antagonized RES-induced peripheral antinociception. Peripheral antinociception of RES intermediate-dose (50 µg/paw) was increased by: (i) bestatin, inhibitor of endogenous opioid degradation involved-enzymes; (ii) MAFP, inhibitor of anandamide amidase; (iii) JZL184, inhibitor of 2-arachidonoylglycerol degradation involved-enzyme; (iv) VDM11, endocannabinoid reuptake inhibitor. Acute and peripheral administration of RES failed to affect the amount of µOR, CB1R and CB2R. Experimental data suggest that RES induces peripheral antinociception through µOR and CB1R activation by endogenous opioid and endocannabinoid releasing.


Asunto(s)
Analgésicos/farmacología , Endocannabinoides/metabolismo , Hiperalgesia/prevención & control , Dolor Nociceptivo/prevención & control , Péptidos Opioides/metabolismo , Receptor Cannabinoide CB1/agonistas , Receptores Opioides mu/agonistas , Resveratrol/farmacología , Animales , Conducta Animal/efectos de los fármacos , Antagonistas de Receptores de Cannabinoides/farmacología , Carragenina , Modelos Animales de Enfermedad , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Hiperalgesia/psicología , Masculino , Ratones , Antagonistas de Narcóticos/farmacología , Dolor Nociceptivo/inducido químicamente , Dolor Nociceptivo/metabolismo , Dolor Nociceptivo/psicología , Receptor Cannabinoide CB1/metabolismo , Receptores Opioides mu/metabolismo , Transducción de Señal
8.
Front Physiol ; 10: 1614, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038294

RESUMEN

Sepsis is a systemic inflammatory response syndrome (SIRS) resulting from a severe infection that is characterized by immune dysregulation, cardiovascular derangements, and end-organ dysfunction. The modification of proteins by O-linked N-acetylglucosamine (O-GlcNAcylation) influences many of the key processes that are altered during sepsis, including the production of inflammatory mediators and vascular contractility. Here, we investigated whether O-GlcNAc affects the inflammatory response and cardiovascular dysfunction associated with sepsis. Mice received an intraperitoneal injection of lipopolysaccharide (LPS, 20 mg/Kg) to induce endotoxic shock and systemic inflammation, resembling sepsis-induced SIRS. The effects of an acute increase in O-GlcNAcylation, by treatment of mice with glucosamine (GlcN, 300 mg/Kg, i.v.) or thiamet-G (ThG, 150 µg/Kg, i.v.), on LPS-associated mortality, production and release of cytokines by macrophages and vascular cells, vascular responsiveness to constrictors and blood pressure were then determined. Mice under LPS-induced SIRS exhibited a systemic and local inflammatory response with increased levels of interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor (TNF-α), as well as severe hypotension and vascular hyporesponsiveness, characterized by reduced vasoconstriction to phenylephrine. In addition, LPS increased neutrophil infiltration in lungs and produced significant lethality. Treatment with GlcN and ThG reduced systemic inflammation and attenuated hypotension and the vascular refractoriness to phenylephrine, improving survival. GlcN and ThG also decreased LPS-induced production of inflammatory cytokines by bone marrow-derived macrophages and nuclear transcription factor-kappa B (NF-κB) activation in RAW 264.7 NF-κB promoter macrophages. Treatment of mice with ThG increased O-glycosylation of NF-κB p65 subunit in mesenteric arteries, which was associated with reduced Ser536 phosphorylation of NF-κB p65. Finally, GlcN also increased survival rates in mice submitted to cecal ligation and puncture (CLP), a sepsis model. In conclusion, increased O-GlcNAc reduces systemic inflammation and cardiovascular disfunction in experimental sepsis models, pointing this pathway as a potential target for therapeutic intervention.

9.
Life Sci ; 211: 198-205, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30243645

RESUMEN

AIM: An imbalance between antioxidant and pro-oxidant factors, with a predominance of the latter, characterises oxidative stress and is indicative of a loss of vascular function. The beneficial vascular effects of oestrogen may be related to its ability to stimulate the G protein-coupled oestrogen receptor (GPER) and produce antioxidant activity. This study evaluated the GPER-dependent relaxation response in the mesenteric resistance arteries of female and male rats and measured the contributions of pro-oxidant and antioxidant enzymes in this response. MAIN METHODS: The relaxation response was characterised in third-order mesenteric arteries using concentration-response curves of the selective GPER agonist G-1 (1 nM-10 µM), target protein levels were measured using Western blots, and vascular superoxide anion (O2-) and hydrogen peroxide (H2O2) levels were measured using dihydroethidium (DHE) and dichlorofluorescein (DCF) staining, respectively. KEY FINDINGS: The GPER agonist induced concentration-dependent vasorelaxation without showing differences between sexes. However, GPER expression was greater in male rats. No sex differences were detected in the expression of antioxidant proteins (catalase, SOD-1, and SOD-2). The basal vascular production of O2- and H2O2 was similar in the studied groups, and stimulation with G-1 maintained this response. SIGNIFICANCE: Together, our results show that the expression of GPER is greater in male mesenteric arteries, despite of the lack of a difference in vascular response. Nevertheless, antioxidant enzyme expression levels and the generation rates of pro-oxidants were similar between the studied groups. These results offer a new perspective for understanding GPER expression and functionality in resistance arteries.


Asunto(s)
Antioxidantes/metabolismo , Endotelio Vascular/metabolismo , Arterias Mesentéricas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vasodilatación/fisiología , Animales , Endotelio Vascular/citología , Femenino , Masculino , Arterias Mesentéricas/citología , Ratas , Ratas Wistar , Factores Sexuales , Transducción de Señal
10.
Nutrition ; 47: 75-82, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29429540

RESUMEN

OBJECTIVES: Studies suggest that sodium butyrate reduces obesity-associated inflammation and insulin resistance in in vitro and in vivo models. Apo E-/- mice have high basal oxidative stress and naturally develop dyslipidemia and atherosclerosis. Because these disorders are present in obesity, the aim of this study was to determine whether Apo E-/- mice could be a more realistic model for studying obesity and insulin resistance. METHODS: We evaluated the action of orally administered sodium butyrate on adipose tissue expansion and insulin resistance using diet-induced obese Apo E-/- mice. RESULTS: Findings from the present study demonstrated that obese mice fed a sodium butyrate-supplemented diet presented a modest reduction of weight gain associated with reduction of adipocyte expansion, induction of adipogenesis and angiogenesis, and adiponectin production. Sodium butyrate also improved insulin sensitivity, by increasing insulin receptor expression associated with activation of Akt signaling pathway. These results were associated with increased peroxisome proliferator-activated receptor-γ expression and nuclear factor-κB downregulation. CONCLUSION: These results suggested that oral supplementation of butyrate could be useful as an adjuvant in the treatment of obesity, metabolic syndrome, and insulin resistance.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Fármacos Antiobesidad/farmacología , Ácido Butírico/farmacología , Obesidad/terapia , Animales , Suplementos Dietéticos , Ratones , Ratones Noqueados para ApoE , Ratones Obesos , Obesidad/metabolismo , PPAR gamma/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
11.
J Nutr Biochem ; 34: 99-105, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27261536

RESUMEN

Butyrate is a 4-carbon fatty acid that has antiinflammatory and antioxidative properties. It has been demonstrated that butyrate is able to reduce atherosclerotic development in animal models by reducing inflammatory factors. However, the contribution of its antioxidative effects of butyrate on atherogenesis has not yet been studied. We investigated the influence of butyrate on oxidative status, reactive oxygen species (ROS) release and oxidative enzymes (NADPH oxidase and iNOS) in atherosclerotic lesions of ApoE(-/-) mice and in oxLDL-stimulated peritoneal macrophages and endothelial cells (EA.hy926). The lesion area in aorta was reduced while in the aortic valve, although lesion area was unaltered, superoxide production and protein nitrosylation were reduced in butyrate-supplemented mice. Peritoneal macrophages from the butyrate group presented a lower free radical release after zymosan stimulus. When endothelial cells were pretreated with butyrate before oxLDL stimulus, the CCL-2 and superoxide ion productions and NADPH oxidase subunit p22phox were reduced. In macrophage cultures, in addition to a reduction in ROS release, nitric oxide and iNOS expression were down-regulated. The data suggest that one mechanism related to the effect of butyrate on atherosclerotic development is the reduction of oxidative stress in the lesion site. The reduction of oxidative stress related to NADPH oxidase and iNOS expression levels associated to butyrate supplementation attenuates endothelium dysfunction and macrophage migration and activation in the lesion site.


Asunto(s)
Antioxidantes/uso terapéutico , Aterosclerosis/prevención & control , Ácido Butírico/uso terapéutico , Suplementos Dietéticos , Endotelio Vascular/metabolismo , NADPH Oxidasas/antagonistas & inhibidores , Estrés Oxidativo , Animales , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Aterosclerosis/patología , Biomarcadores/sangre , Biomarcadores/metabolismo , Células Cultivadas , Endotelio Vascular/inmunología , Endotelio Vascular/patología , Represión Enzimática , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/inmunología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Lipoproteínas LDL/efectos adversos , Activación de Macrófagos , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/metabolismo , Macrófagos Peritoneales/patología , Masculino , Ratones Noqueados , NADPH Oxidasas/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo
12.
Toxicol Appl Pharmacol ; 301: 22-30, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27074353

RESUMEN

UNLABELLED: Anabolic-androgenic steroids are misused, including by women, but little is known about the cardiovascular effects of these drugs on women. AIM: To evaluated the effects of nandrolone decanoate (ND) and resistive physical exercise on cardiac contractility in young female rats. MAIN METHODS: Female Wistar rats were separated into 4 groups: C (untrained animals); E (animals were submitted to resistance exercise by jumping in water 5 times per week); ND (animals were treated with ND, 20mg/kg/week for 4weeks); and NDE (trained and treated). The haemodynamic parameters (+dP/dtmax, -dP/dtmin and Tau) were assessed in the left ventricle. The heart was collected for histological analyses and collagen deposition. The gastrocnemius muscle was weighed, and hypertrophy was assessed by the ratio of their weights to gastrocnemius/tibia length. The expression of calcium handling proteins was measured by western blot analysis. RESULTS: ND treatment and physical exercise increased cardiac contractility and relaxation. In addition, ND promoted increases in phospholamban phosphorylated (p-PLB) and isoforms of sarcoplasmic/endoplasmic reticulum calcium ATPase 2 (SERCA2a) expression, while resistance exercise increased the phosphorylation of PLB and expression of Na(+)/Ca(2+) exchangers (NCX). Cardiac hypertrophy and collagen deposition were observed after ND treatment. CONCLUSION: Regulatory components of cytosolic calcium, such as SERCA2a and p-PLB, play important roles in modulating the contractility and relaxation effects of ND in females.


Asunto(s)
Anabolizantes/farmacología , Nandrolona/análogos & derivados , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Intercambiador de Sodio-Calcio/metabolismo , Función Ventricular Izquierda/fisiología , Remodelación Ventricular/fisiología , Animales , Presión Arterial/efectos de los fármacos , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Cardiomegalia/patología , Colágeno/metabolismo , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Nandrolona/farmacología , Nandrolona Decanoato , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...