Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 16(12): e0010935, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36512510

RESUMEN

Aedes mosquito vectors transmit many viruses of global health concern, including dengue, chikungunya and Zika. These vector-borne viral diseases have a limited number of treatment options, and vaccines vary in their effectiveness. Consequently, integrated vector management is a primary strategy for disease control. However, the increasing emergence and spread of insecticide resistance is threatening the efficacy of vector control methods. Identifying mutations associated with resistance in vector populations is important to monitor the occurrence and evolution of insecticide resistance and inform control strategies. Rapid and cost-effective genome sequencing approaches are urgently needed. Here we present an adaptable targeted amplicon approach for cost-effective implementation within next generation sequencing platforms. This approach can identify single nucleotide polymorphisms (SNPs) and small insertions and deletions (indels) in genes involved in insecticide resistance in Aedes aegypti mosquitoes. We designed and tested eleven amplicons, which included segments of the ace-1 (carbamate target), the Voltage-Gated Sodium Channel (vgsc; pyrethroids, DDT and organochlorines), and rdl (dieldrin) genes; thereby covering established knockdown resistance (kdr) mutations (e.g., S989P, I1011M/V, V1016G/I and F1534C), with the potential to identify novel ones. The amplicon assays were designed with internal barcodes, to facilitate multiplexing of large numbers of mosquitoes at low cost, and were sequenced using an Illumina platform. Our approach was evaluated on 152 Ae. aegypti mosquitoes collected in Cabo Verde, an archipelago with a history of arbovirus outbreaks. The amplicon sequence data revealed 146 SNPs, including four non-synonymous polymorphisms in the vgsc gene, one in ace-1 and the 296S rdl mutation previously associated with resistance to organochlorines. The 296S rdl mutation was identified in 98% of mosquitoes screened, consistent with the past use of an organochlorine compound (e.g., DDT). Overall, our work shows that targeted amplicon sequencing is a rapid, robust, and cost-effective tool that can be used to perform high throughput monitoring of insecticide resistance.


Asunto(s)
Aedes , Insecticidas , Piretrinas , Canales de Sodio Activados por Voltaje , Infección por el Virus Zika , Virus Zika , Animales , Resistencia a los Insecticidas/genética , Aedes/genética , DDT , Cabo Verde , Insecticidas/farmacología , Piretrinas/farmacología , Mosquitos Vectores/genética , Canales de Sodio Activados por Voltaje/genética , Mutación
2.
Parasit Vectors ; 13(1): 481, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958043

RESUMEN

BACKGROUND: Aedes spp. are responsible for the transmission of many arboviruses, which contribute to rising human morbidity and mortality worldwide. The Aedes aegypti mosquito is a main vector for chikungunya, dengue and yellow fever infections, whose incidence have been increasing and distribution expanding. This vector has also driven the emergence of the Zika virus (ZIKV), first reported in Africa which spread rapidly to Asia and more recently across the Americas. During the outbreak in the Americas, Cape Verde became the first African country declaring a Zika epidemic, with confirmed cases of microcephaly. Here we investigate the prevalence of ZIKV and dengue (DENV) infected Ae. aegypti mosquitoes in the weeks following the outbreak in Cape Verde, and the presence of insecticide resistance in the circulating vector population. Genetic diversity in the mosquito population was also analysed. METHODS: From August to October 2016, 816 Ae. aegypti mosquitoes were collected in several locations across Praia, Cape Verde, the major hot spot of reported ZIKV cases in the country. All mosquitoes were screened by reverse transcription PCR for ZIKV and DENV, and a subset (n = 220) were screened for knockdown insecticide resistance associated mutations in the voltage gated sodium channel (VGSC) gene by capillary sequencing. The mitochondrial NADH dehydrogenase subunit 4 (nad4) gene was sequenced in 100 mosquitoes. These data were compared to 977 global sequences in a haplotype network and a phylogenetic tree analysis. RESULTS: Two Ae. aegypti mosquitoes were ZIKV positive (0.25%). There were no SNP mutations found in the VGSC gene associated with insecticide resistance. Analysis of the nad4 gene revealed 11 haplotypes in the Cape Verdean samples, with 5 being singletons. Seven haplotypes were exclusive to Cape Verde. Several of the remaining haplotypes were frequent in the global dataset, being present in several countries (including Cape Verde) across five different continents. The most common haplotype in Cape Verde (50.6 %) was also found in Africa and South America. CONCLUSIONS: There was low-level Zika virus circulation in mosquitoes from Praia shortly after the outbreak. The Ae. aegypti population did not appear to have the kdr mutations associated with pyrethroid resistance. Furthermore, haplotype and phylogenetic analyses revealed that Cape Verde Ae. aegypti mosquitoes are most closely related to those from other countries in Africa and South America.


Asunto(s)
Aedes/genética , Resistencia a los Insecticidas , Mosquitos Vectores/genética , Infección por el Virus Zika/transmisión , Virus Zika/fisiología , Aedes/efectos de los fármacos , Aedes/fisiología , Aedes/virología , Animales , Cabo Verde , Dengue/transmisión , Dengue/virología , Virus del Dengue/genética , Virus del Dengue/fisiología , Femenino , Variación Genética , Humanos , Insecticidas/farmacología , Masculino , Mosquitos Vectores/efectos de los fármacos , Mosquitos Vectores/fisiología , Mosquitos Vectores/virología , Filogenia , Dinámica Poblacional , Virus Zika/genética , Infección por el Virus Zika/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA